Pregled bibliografske jedinice broj: 952741
Memory-efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment
Memory-efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment // Proceedings of British Machine Vision Conference BMVC 2018
Newcastle upon Tyne, Ujedinjeno Kraljevstvo, 2018. str. 1-11 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 952741 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Memory-efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment
Autori
Markuš, Nenad ; Gogić, Ivan ; Pandžić, Igor Sunday ; Ahlberg, Jörgen
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of British Machine Vision Conference BMVC 2018
/ - , 2018, 1-11
Skup
British Machine Vision Conference BMVC
Mjesto i datum
Newcastle upon Tyne, Ujedinjeno Kraljevstvo, 03.09.2018. - 06.09.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
decision tree
Sažetak
Ren et al. recently introduced a method for aggregating multiple decision trees into a strong predictor by interpreting a path taken by a sample down each tree as a binary vector and performing linear regression on top of these vectors stacked together. They provided experimental evidence that the method offers advantages over the usual approaches for combining decision trees (random forests and boosting). The method truly shines when the regression target is a large vector with correlated dimensions, such as a 2D face shape represented with the positions of several facial landmarks. However, we argue that their basic method is not applicable in many practical scenarios due to large memory requirements. This paper shows how this issue can be solved through the use of quantization and architectural changes of the predictor that maps decision tree-derived encodings to the desired output.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb