Pregled bibliografske jedinice broj: 952199
Multi-agent Gaussian Process Motion Planning via Probabilistic Inference
Multi-agent Gaussian Process Motion Planning via Probabilistic Inference // 12th IFAC Symposium on Robot Control (SYROCO2018)
Budimpešta, Mađarska, 2018. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 952199 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multi-agent Gaussian Process Motion Planning via Probabilistic Inference
Autori
Petrović, Luka ; Marković, Ivan ; Seder, Marija
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
12th IFAC Symposium on Robot Control (SYROCO2018)
/ - , 2018, 1-6
Skup
12th IFAC Symposium on Robot Control (SYROCO2018)
Mjesto i datum
Budimpešta, Mađarska, 27.08.2018. - 30.08.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
motion planning ; trajectory optimization ; multi-agent system ; probabilistic inference ; factor graphs
Sažetak
This paper deals with motion planning for multiple agents by representing the problem as a simultaneous optimization of every agent’s trajectory. Each trajectory is considered as a sample from a one-dimensional continuous-time Gaussian process (GP) generated by a linear time-varying stochastic differential equation driven by white noise. By formulating the planning problem as probabilistic inference on a factor graph, the structure of the pertaining GP can be exploited to find the solution efficiently using numerical optimization. In contrast to planning each agent’s trajectory individually, where only the current poses of other agents are taken into account, we propose simultaneous planning of multiple trajectories that works in a predictive manner. It takes into account the information about each agent’s whereabouts at every future time instant, since full trajectories of each agent are found jointly during a single optimization procedure. We compare the proposed method to an individual trajectory planning approach, demonstrating significant improvement in both success rate and computational efficiency.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb