Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 952199

Multi-agent Gaussian Process Motion Planning via Probabilistic Inference


Petrović, Luka; Marković, Ivan; Seder, Marija
Multi-agent Gaussian Process Motion Planning via Probabilistic Inference // 12th IFAC Symposium on Robot Control (SYROCO2018)
Budimpešta, Mađarska, 2018. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 952199 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Multi-agent Gaussian Process Motion Planning via Probabilistic Inference

Autori
Petrović, Luka ; Marković, Ivan ; Seder, Marija

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
12th IFAC Symposium on Robot Control (SYROCO2018) / - , 2018, 1-6

Skup
12th IFAC Symposium on Robot Control (SYROCO2018)

Mjesto i datum
Budimpešta, Mađarska, 27.08.2018. - 30.08.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
motion planning ; trajectory optimization ; multi-agent system ; probabilistic inference ; factor graphs

Sažetak
This paper deals with motion planning for multiple agents by representing the problem as a simultaneous optimization of every agent’s trajectory. Each trajectory is considered as a sample from a one-dimensional continuous-time Gaussian process (GP) generated by a linear time-varying stochastic differential equation driven by white noise. By formulating the planning problem as probabilistic inference on a factor graph, the structure of the pertaining GP can be exploited to find the solution efficiently using numerical optimization. In contrast to planning each agent’s trajectory individually, where only the current poses of other agents are taken into account, we propose simultaneous planning of multiple trajectories that works in a predictive manner. It takes into account the information about each agent’s whereabouts at every future time instant, since full trajectories of each agent are found jointly during a single optimization procedure. We compare the proposed method to an individual trajectory planning approach, demonstrating significant improvement in both success rate and computational efficiency.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Marija Seder (autor)

Avatar Url Ivan Marković (autor)

Avatar Url Luka Petrović (autor)


Citiraj ovu publikaciju:

Petrović, Luka; Marković, Ivan; Seder, Marija
Multi-agent Gaussian Process Motion Planning via Probabilistic Inference // 12th IFAC Symposium on Robot Control (SYROCO2018)
Budimpešta, Mađarska, 2018. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Petrović, L., Marković, I. & Seder, M. (2018) Multi-agent Gaussian Process Motion Planning via Probabilistic Inference. U: 12th IFAC Symposium on Robot Control (SYROCO2018).
@article{article, author = {Petrovi\'{c}, Luka and Markovi\'{c}, Ivan and Seder, Marija}, year = {2018}, pages = {1-6}, keywords = {motion planning, trajectory optimization, multi-agent system, probabilistic inference, factor graphs}, title = {Multi-agent Gaussian Process Motion Planning via Probabilistic Inference}, keyword = {motion planning, trajectory optimization, multi-agent system, probabilistic inference, factor graphs}, publisherplace = {Budimpe\v{s}ta, Ma\djarska} }
@article{article, author = {Petrovi\'{c}, Luka and Markovi\'{c}, Ivan and Seder, Marija}, year = {2018}, pages = {1-6}, keywords = {motion planning, trajectory optimization, multi-agent system, probabilistic inference, factor graphs}, title = {Multi-agent Gaussian Process Motion Planning via Probabilistic Inference}, keyword = {motion planning, trajectory optimization, multi-agent system, probabilistic inference, factor graphs}, publisherplace = {Budimpe\v{s}ta, Ma\djarska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font