Pregled bibliografske jedinice broj: 952197
Computationally efficient dense moving object detection based on reduced space disparity estimation
Computationally efficient dense moving object detection based on reduced space disparity estimation // 12th IFAC Symposium on Robot Control (SYROCO2018)
Budimpešta, Mađarska, 2018. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 952197 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Computationally efficient dense moving object detection based on reduced space disparity estimation
Autori
Popović, Goran ; Hadviger, Antea ; Marković, Ivan ; Petrović, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
12th IFAC Symposium on Robot Control (SYROCO2018)
/ - , 2018, 1-6
Skup
12th IFAC Symposium on Robot Control (SYROCO2018)
Mjesto i datum
Budimpešta, Mađarska, 27.08.2018. - 30.08.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
stereo vision ; dense disparty estimation ; moving object detection ; semi-global matching
Sažetak
Computationally efficient moving object detection and depth estimation from a stereo camera is an extremely useful tool for many computer vision applications, including robotics and autonomous driving. In this paper we show how moving objects can be densely detected by estimating disparity using an algorithm that improves complexity and accuracy of stereo matching by relying on information from previous frames. The main idea behind this approach is that by using the ego-motion estimation and the disparity map of the previous frame, we can set a prior base that enables us to reduce the complexity of the current frame disparity estimation, subsequently also detecting moving objects in the scene. For each pixel we run a Kalman filter that recursively fuses the disparity prediction and reduced space semi-global matching (SGM) measurements. The proposed algorithm has been implemented and optimized using streaming single instruction multiple data instruction set and multi-threading. Furthermore, in order to estimate the process and measurement noise as reliably as possible, we conduct extensive experiments on the KITTI suite using the ground truth obtained by the 3D laser range sensor. Concerning disparity estimation, compared to the OpenCV SGM implementation, the proposed method yields improvement on the KITTI dataset sequences in terms of both speed and accuracy.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb