Pregled bibliografske jedinice broj: 950676
Explainable Artificial Intelligence: A Survey
Explainable Artificial Intelligence: A Survey // Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2018 / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2018. str. 210-215 doi:10.23919/MIPRO.2018.8400040 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 950676 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Explainable Artificial Intelligence: A Survey
Autori
Došilović, Filip Karlo ; Brčić, Mario ; Hlupić, Nikica
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2018
/ Skala, Karolj - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2018, 210-215
ISBN
978-953-233-096-0
Skup
41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2018)
Mjesto i datum
Opatija, Hrvatska, 21.05.2018. - 25.05.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
explainable artificial intelligence ; interpretability ; explainability ; comprehensibility
Sažetak
In the last decade, with availability of large datasets and more computing power, machine learning systems have achieved (super)human performance in a wide variety of tasks. Examples of this rapid development can be seen in image recognition, speech analysis, strategic game planning and many more. The problem with many state-of-the-art models is a lack of transparency and interpretability. The lack of thereof is a major drawback in many applications, e.g. healthcare and finance, where rationale for model's decision is a requirement for trust. In the light of these issues, explainable artificial intelligence (XAI) has become an area of interest in research community. This paper summarizes recent developments in XAI in supervised learning, starts a discussion on its connection with artificial general intelligence, and gives proposals for further research directions.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb