Pregled bibliografske jedinice broj: 949233
Reinforcement learning in simulated systems
Reinforcement learning in simulated systems, 2018., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 949233 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Reinforcement learning in simulated systems
Autori
Livaja, Vladimir Dragutin
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
09.07
Godina
2018
Stranica
50
Mentor
Pripužić, Krešimir
Ključne riječi
podržano učenje, neuronske mreže ; agent ; okruženje ; Q vrijednosti ; vrijednost stanja ; povratne mreže ; iskusno ponavljanje
(Reinforcement learning ; agent ; environment ; deep neural networks ; Q values ; state values ; experience replay ; recurrent networks.)
Sažetak
In this thesis we focused on implementing a reinforcement agent that was able to generalize to various simulated systems and in doing so ; showed the ability of the reinforcement learning algorithm to adapt. Fundamentals of deep learning were also described. Using Tensorflow, a reinforcement learning agent was implemented. The agent was evaluated on three different scenarios: Pacman from the Atari 2600 games and two different scenarios of the game Doom. The evaluation results were shown via graphs.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-UIP-2017-05-9066 - Učinkovita stvarnovremenska obrada brzih geoprostornih podataka (RETROFIT) (Pripužić, Krešimir, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Krešimir Pripužić
(mentor)