Pregled bibliografske jedinice broj: 948531
Joint functional convergence of partial sums and maxima for linear processes
Joint functional convergence of partial sums and maxima for linear processes // Lithuanian Mathematical Journal, 58 (2018), 4; 457-479 doi:10.1007/s10986-018-9415-2 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 948531 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Joint functional convergence of partial sums and
maxima for linear processes
Autori
Krizmanić, Danijel
Izvornik
Lithuanian Mathematical Journal (0363-1672) 58
(2018), 4;
457-479
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
extremal process ; functional limit theorem ; linear process ; regular variation ; Skorohod M2 topology ; stable Levy process
Sažetak
For linear processes with independent identically distributed innovations that are regularly varying with tail index alpha in (0, 2), we study functional convergence of the joint partial sum and partial maxima processes. We derive a functional limit theorem under certain assumptions on the coefficients of the linear processes which enable the functional convergence to hold in the space of R^2-valued cadlag functions on [0, 1] with the Skorohod weak M2 topology. Also a joint convergence in the M2 topology on the first coordinate and in the M1 topology on the second coordinate is obtained.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
Potpora istraživanjima Sveučilišta u Rijeci broj 13.14.1.2.02
HRZZ-IP-2013-11-3526 - Stohastičke metode u analitičkim i primijenjenim problemima (SMAAP) (Vondraček, Zoran, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Danijel Krizmanić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus