Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 947523

On the Selection of the Proper Number of Classes in TFD Segmentation for Extraction of Useful Information Content from Noisy Signals


Saulig, Nicoletta; Milanović, Željka; Lerga, Jonatan; Griparić, Karlo
On the Selection of the Proper Number of Classes in TFD Segmentation for Extraction of Useful Information Content from Noisy Signals // 3rd International Conference on Smart and Sustainable Technologies Splitech 2018
Split, 2018. str. 1-5 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 947523 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On the Selection of the Proper Number of Classes in TFD Segmentation for Extraction of Useful Information Content from Noisy Signals

Autori
Saulig, Nicoletta ; Milanović, Željka ; Lerga, Jonatan ; Griparić, Karlo

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
3rd International Conference on Smart and Sustainable Technologies Splitech 2018 / - Split, 2018, 1-5

Skup
3rd International Conference on Smart and Sustainable Technologies (SpliTech 2018)

Mjesto i datum
Split, Hrvatska, 26.06.2018. - 29.06.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Time-frequency distributions, Threshold, K-means, Local Renyi entropy

Sažetak
In this paper, the influence of the selection of the number of classes as defining parameter of 1D the segmentation into the procedure of evaluation of noise classes and useful information classes applied to time- frequency distributions (TFD) of noisy signals is investigated. The method for identification and separation of the useful information content, from the noisy background nonstationary signals, is based on an local Renyi entropy evaluation of ´ the individual classes. The initial segmentation of the TFD information content by the K-means clustering algorithm, is, however, a decisive step of the denoising procedure, since it irreversibly affects the input data of the entropy estimation, and hence the overall algorithm’s performance. The paper compares results, in terms of error rate, obtained for different fixed values of the parameter K, and for an adaptive method for determination of the optimal parameter K. Results tend to show that the increasing of the parameter K acts beneficially on the algorithm’s performance, while no similar behavior has been observed using the adaptive approach

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište Jurja Dobrile u Puli

Citiraj ovu publikaciju:

Saulig, Nicoletta; Milanović, Željka; Lerga, Jonatan; Griparić, Karlo
On the Selection of the Proper Number of Classes in TFD Segmentation for Extraction of Useful Information Content from Noisy Signals // 3rd International Conference on Smart and Sustainable Technologies Splitech 2018
Split, 2018. str. 1-5 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Saulig, N., Milanović, Ž., Lerga, J. & Griparić, K. (2018) On the Selection of the Proper Number of Classes in TFD Segmentation for Extraction of Useful Information Content from Noisy Signals. U: 3rd International Conference on Smart and Sustainable Technologies Splitech 2018.
@article{article, author = {Saulig, Nicoletta and Milanovi\'{c}, \v{Z}eljka and Lerga, Jonatan and Gripari\'{c}, Karlo}, year = {2018}, pages = {1-5}, keywords = {Time-frequency distributions, Threshold, K-means, Local Renyi entropy}, title = {On the Selection of the Proper Number of Classes in TFD Segmentation for Extraction of Useful Information Content from Noisy Signals}, keyword = {Time-frequency distributions, Threshold, K-means, Local Renyi entropy}, publisherplace = {Split, Hrvatska} }
@article{article, author = {Saulig, Nicoletta and Milanovi\'{c}, \v{Z}eljka and Lerga, Jonatan and Gripari\'{c}, Karlo}, year = {2018}, pages = {1-5}, keywords = {Time-frequency distributions, Threshold, K-means, Local Renyi entropy}, title = {On the Selection of the Proper Number of Classes in TFD Segmentation for Extraction of Useful Information Content from Noisy Signals}, keyword = {Time-frequency distributions, Threshold, K-means, Local Renyi entropy}, publisherplace = {Split, Hrvatska} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Conference Proceedings Citation Index - Science (CPCI-S)





Contrast
Increase Font
Decrease Font
Dyslexic Font