Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 947485

Neural network approach in forecasting realized variance using high-frequency data


Arnerić, Josip; Poklepović, Tea; Wen Teai, Juin
Neural network approach in forecasting realized variance using high-frequency data // Business systems research, 9 (2018), 2; 18-34 doi:10.2478/bsrj-2018-0016 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 947485 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Neural network approach in forecasting realized variance using high-frequency data

Autori
Arnerić, Josip ; Poklepović, Tea ; Wen Teai, Juin

Izvornik
Business systems research (1847-8344) 9 (2018), 2; 18-34

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
high-frequency data ; realized variance ; nonlinearity ; long memory ; jumps ; leverage ; feedforward neural networks ; Heterogeneous AutoRegressive model

Sažetak
Background: Since high-frequency data have become available, an unbiased volatility estimator, i.e. realized variance (RV) can be computed. Commonly used models for RV forecasting suffer from strong persistence with a high sensitivity to the returns distribution assumption and they use only daily returns. Objectives: The main objective is measurement and forecasting of RV. Two approaches are compared: Heterogeneous AutoRegressive model (HAR-RV) and Feedforward Neural Networks (FNNs). Even though HAR-RV-type models describe RV stylized facts very well, they ignore its nonlinear behaviour. Therefore, FNN- HAR-type models are developed. Methods/Approach: Firstly, an optimal sampling frequency with application to the DAX index is chosen. Secondly, in and out of sample predictions within HAR models and FNNs are compared using RMSE, AIC, the Wald test and the DM test. Weights of FNN-HAR-type models are estimated using the BP algorithm. Results: The optimal sampling frequency of RV is 10 minutes. Within HAR-type models, HAR-RV-J has better, but not significant, forecasting performances, while FNN-HAR-J and FNNLHAR-J have significantly better predictive accuracy in comparison to the FNN-HAR model. Conclusions: Compared to the traditional ones, FNN-HAR-type models are better in capturing nonlinear behaviour of RV. FNN-HAR-type models have better accuracy compared to traditional HAR-type models, but only on the sample data, whereas their out-of- sample predictive accuracy is approximately equal.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Projekti:
HRZZ-UIP-2013-11-5199 - Mjerenje, modliranje i prognoziranje volatilnosti (Volatility) (Arnerić, Josip, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Ekonomski fakultet, Split,
Ekonomski fakultet, Zagreb

Profili:

Avatar Url Tea Šestanović (autor)

Avatar Url Josip Arnerić (autor)

Poveznice na cjeloviti tekst rada:

doi hrcak.srce.hr content.sciendo.com

Citiraj ovu publikaciju:

Arnerić, Josip; Poklepović, Tea; Wen Teai, Juin
Neural network approach in forecasting realized variance using high-frequency data // Business systems research, 9 (2018), 2; 18-34 doi:10.2478/bsrj-2018-0016 (međunarodna recenzija, članak, znanstveni)
Arnerić, J., Poklepović, T. & Wen Teai, J. (2018) Neural network approach in forecasting realized variance using high-frequency data. Business systems research, 9 (2), 18-34 doi:10.2478/bsrj-2018-0016.
@article{article, author = {Arneri\'{c}, Josip and Poklepovi\'{c}, Tea and Wen Teai, Juin}, year = {2018}, pages = {18-34}, DOI = {10.2478/bsrj-2018-0016}, keywords = {high-frequency data, realized variance, nonlinearity, long memory, jumps, leverage, feedforward neural networks, Heterogeneous AutoRegressive model}, journal = {Business systems research}, doi = {10.2478/bsrj-2018-0016}, volume = {9}, number = {2}, issn = {1847-8344}, title = {Neural network approach in forecasting realized variance using high-frequency data}, keyword = {high-frequency data, realized variance, nonlinearity, long memory, jumps, leverage, feedforward neural networks, Heterogeneous AutoRegressive model} }
@article{article, author = {Arneri\'{c}, Josip and Poklepovi\'{c}, Tea and Wen Teai, Juin}, year = {2018}, pages = {18-34}, DOI = {10.2478/bsrj-2018-0016}, keywords = {high-frequency data, realized variance, nonlinearity, long memory, jumps, leverage, feedforward neural networks, Heterogeneous AutoRegressive model}, journal = {Business systems research}, doi = {10.2478/bsrj-2018-0016}, volume = {9}, number = {2}, issn = {1847-8344}, title = {Neural network approach in forecasting realized variance using high-frequency data}, keyword = {high-frequency data, realized variance, nonlinearity, long memory, jumps, leverage, feedforward neural networks, Heterogeneous AutoRegressive model} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)


Uključenost u ostale bibliografske baze podataka::


  • DOAJ
  • EBSCO
  • EBSCO Discovery Service
  • Elsevier - SCOPUS
  • ERIH PLUS
  • Genamics
  • JournalSeek
  • Google Scholar
  • Hrcak
  • Inspec
  • J-Gate
  • JournalGuide
  • JournalTOCs
  • KESLI-NDSL
  • Naviga
  • Primo Central
  • ProQuest
  • Publons
  • ReadCube
  • Research Papers in Economics
  • ResearchGate
  • SCImago
  • Sherpa/RoMEO
  • Summon
  • TDNet
  • TEMA


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font