Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 947351

Self-organizing maps for fraud profiling in leasing


Pejić Bach, Mirjana; Vlahović, Nikola; Pivar, Jasmina
Self-organizing maps for fraud profiling in leasing // Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2018 / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2018. str. 1203-1208 doi:10.23919/MIPRO.2018.8400218 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 947351 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Self-organizing maps for fraud profiling in leasing

Autori
Pejić Bach, Mirjana ; Vlahović, Nikola ; Pivar, Jasmina

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2018 / Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2018, 1203-1208

ISBN
978-953-233-095-3

Skup
41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2018)

Mjesto i datum
Opatija, Hrvatska, 21.05.2018. - 25.05.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Companies, Banking, Insurance, Self-organizing feature maps, Clustering algorithms

Sažetak
Fraud is intended and planned activity aimed at achieving material or immaterial gains against interests of an organization or a person. It often occurs in financial industries, such as banking, insurance, and leasing. The goal of this paper is to present a novel approach to profiling fraudulent behavior in leasing companies, using self-organizing maps. Dataset of one leasing company that consists of both fraudulent and non-fraudulent transactions has been analyzed. Cluster analysis has been applied using the self-organizing maps algorithm, with the support of Viscovery SOMine software. Five clusters were identified, that have a different structure according to an industry of the client, previous experience with a client, type of a leasing object, and status of a leasing object (new or used). The clusters were compared using chi-square test according to proportion of fraudulent and non-fraudulent transactions, resulting in profiles of clients and leasing objects that are more prone to fraudulent behavior.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2014-09-3729 - Procesna i poslovna intelilgencija za poslovnu izvrsnost (PROSPER) (Bosilj Vukšić, Vesna, HRZZ - 2014-09) ( CroRIS)

Ustanove:
Ekonomski fakultet, Zagreb

Profili:

Avatar Url Mirjana Pejić Bach (autor)

Avatar Url Nikola Vlahović (autor)

Avatar Url Jasmina Pivar (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Pejić Bach, Mirjana; Vlahović, Nikola; Pivar, Jasmina
Self-organizing maps for fraud profiling in leasing // Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2018 / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2018. str. 1203-1208 doi:10.23919/MIPRO.2018.8400218 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Pejić Bach, M., Vlahović, N. & Pivar, J. (2018) Self-organizing maps for fraud profiling in leasing. U: Skala, K. (ur.)Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2018 doi:10.23919/MIPRO.2018.8400218.
@article{article, author = {Peji\'{c} Bach, Mirjana and Vlahovi\'{c}, Nikola and Pivar, Jasmina}, editor = {Skala, K.}, year = {2018}, pages = {1203-1208}, DOI = {10.23919/MIPRO.2018.8400218}, keywords = {Companies, Banking, Insurance, Self-organizing feature maps, Clustering algorithms}, doi = {10.23919/MIPRO.2018.8400218}, isbn = {978-953-233-095-3}, title = {Self-organizing maps for fraud profiling in leasing}, keyword = {Companies, Banking, Insurance, Self-organizing feature maps, Clustering algorithms}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Peji\'{c} Bach, Mirjana and Vlahovi\'{c}, Nikola and Pivar, Jasmina}, editor = {Skala, K.}, year = {2018}, pages = {1203-1208}, DOI = {10.23919/MIPRO.2018.8400218}, keywords = {Companies, Banking, Insurance, Self-organizing feature maps, Clustering algorithms}, doi = {10.23919/MIPRO.2018.8400218}, isbn = {978-953-233-095-3}, title = {Self-organizing maps for fraud profiling in leasing}, keyword = {Companies, Banking, Insurance, Self-organizing feature maps, Clustering algorithms}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font