Pregled bibliografske jedinice broj: 947351
Self-organizing maps for fraud profiling in leasing
Self-organizing maps for fraud profiling in leasing // Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2018 / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2018. str. 1203-1208 doi:10.23919/MIPRO.2018.8400218 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 947351 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Self-organizing maps for fraud profiling in leasing
Autori
Pejić Bach, Mirjana ; Vlahović, Nikola ; Pivar, Jasmina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2018
/ Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2018, 1203-1208
ISBN
978-953-233-095-3
Skup
41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2018)
Mjesto i datum
Opatija, Hrvatska, 21.05.2018. - 25.05.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Companies, Banking, Insurance, Self-organizing feature maps, Clustering algorithms
Sažetak
Fraud is intended and planned activity aimed at achieving material or immaterial gains against interests of an organization or a person. It often occurs in financial industries, such as banking, insurance, and leasing. The goal of this paper is to present a novel approach to profiling fraudulent behavior in leasing companies, using self-organizing maps. Dataset of one leasing company that consists of both fraudulent and non-fraudulent transactions has been analyzed. Cluster analysis has been applied using the self-organizing maps algorithm, with the support of Viscovery SOMine software. Five clusters were identified, that have a different structure according to an industry of the client, previous experience with a client, type of a leasing object, and status of a leasing object (new or used). The clusters were compared using chi-square test according to proportion of fraudulent and non-fraudulent transactions, resulting in profiles of clients and leasing objects that are more prone to fraudulent behavior.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-3729 - Procesna i poslovna intelilgencija za poslovnu izvrsnost (PROSPER) (Bosilj Vukšić, Vesna, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Ekonomski fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus