Pregled bibliografske jedinice broj: 945946
Analysis of Transformer Health Index Using Bayesian Statistical Models
Analysis of Transformer Health Index Using Bayesian Statistical Models // 3rd International Conference on Smart and Sustainable Technologies (SpliTech)
Split: Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2018. S1 - 1570435404 - 2706, 7 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 945946 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analysis of Transformer Health Index Using Bayesian Statistical Models
Autori
Sarajcev, Petar ; Jakus, Damir ; Vasilj, Josip ; Nikolic, Matej
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
3rd International Conference on Smart and Sustainable Technologies (SpliTech)
/ - Split : Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2018
ISBN
978-953-290-081-1
Skup
3rd International Conference on Smart and Sustainable Technologies (SpliTech 2018)
Mjesto i datum
Split, Hrvatska, 26.06.2018. - 29.06.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Transformer ; Health Index ; Bayesian statistics ; Softmax regression ; Logistic regression ; Machine learning
Sažetak
Health index (HI) is a very useful tool for rep- resenting the overall health of a complex asset, such as the power transformer, due to the fact that it quantifies equipment condition based on different criteria that are related to the long- term degradation factors that cumulatively lead to the asset’s end-of-life. The main concern with HI computation is with the practical management of the numerous criteria that are combined in different ways (with proprietary information and associated weighting factors) to produce a HI value. Hence, several authors have proposed different approaches to the HI calculation, e.g., analytical expressions, logistic regression, fuzzy logic, support vector machines, and artificial neural networks. This paper proposes using Bayesian multinomial logistic regression for the HI calculation. This approach offers high flexibility with multiple metric and/or nominal predictors, including correlation and interaction between predictors, and acknowledges the fact that the transformer HI is described with three to five categories. It further offers high model interpretability and benefits from the Bayesian ability to quantize uncertainty in model parameters.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus