Pregled bibliografske jedinice broj: 943553
A version of the theorem of Johnson, Palmer and Sell for quasicompact cocycles
A version of the theorem of Johnson, Palmer and Sell for quasicompact cocycles // Archiv der Mathematik, 111 (2018), 5; 523-534 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 943553 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A version of the theorem of Johnson, Palmer and Sell for quasicompact cocycles
Autori
Dragičević, Davor
Izvornik
Archiv der Mathematik (0003-889X) 111
(2018), 5;
523-534
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Sacker-Sell spectrum, Lyapunov exponents, invariant measures
Sažetak
The well-known theorem of Johnson, Palmer and Sell asserts that the endpoints of the Sacker-- Sell spectrum of a given cocycle of invertible matrices over a topological dynamical system $(M, f)$ are realized as Lyapunov exponents with respect to some ergodic invariant probability measure for $f$. In this note we establish the version of this result for quasicompact cocycles of operators acting on an arbitrary Banach space.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-2285 - Geometrijska, ergodička i topološka analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Davor Dragičević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus