Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 943127

Applying advanced linear models in the task of predicting student success


Glavaš, Marko; Brkić Bakarić, Marija; Matetić, Maja
Applying advanced linear models in the task of predicting student success // Proceedings of 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) / Biljanović, Petar (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2018. str. 820-824 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 943127 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Applying advanced linear models in the task of predicting student success

Autori
Glavaš, Marko ; Brkić Bakarić, Marija ; Matetić, Maja

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) / Biljanović, Petar - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2018, 820-824

Skup
41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2018)

Mjesto i datum
Opatija, Hrvatska, 21.05.2018. - 25.05.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Linear model, regularization, prediction of student success, lasso regression, ridge regression

Sažetak
The paper presents a comparative analysis of different linear models based on the Moodle data related to the course Programming 2 at the Department of Informatics, University of Rijeka. The task is to predict student final course success based on student activity represented by the initial set of features. We experiment with several methods with the aim to reduce the feature set in order to extract the most representative features thus increasing prediction accuracy. The interpretation of the obtained predictive models is given.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka

Profili:

Avatar Url Maja Matetić (autor)

Avatar Url Marija Brkić Bakarić (autor)

Poveznice na cjeloviti tekst rada:

docs.mipro-proceedings.com

Citiraj ovu publikaciju:

Glavaš, Marko; Brkić Bakarić, Marija; Matetić, Maja
Applying advanced linear models in the task of predicting student success // Proceedings of 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) / Biljanović, Petar (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2018. str. 820-824 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Glavaš, M., Brkić Bakarić, M. & Matetić, M. (2018) Applying advanced linear models in the task of predicting student success. U: Biljanović, P. (ur.)Proceedings of 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).
@article{article, author = {Glava\v{s}, Marko and Brki\'{c} Bakari\'{c}, Marija and Mateti\'{c}, Maja}, editor = {Biljanovi\'{c}, P.}, year = {2018}, pages = {820-824}, keywords = {Linear model, regularization, prediction of student success, lasso regression, ridge regression}, title = {Applying advanced linear models in the task of predicting student success}, keyword = {Linear model, regularization, prediction of student success, lasso regression, ridge regression}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Glava\v{s}, Marko and Brki\'{c} Bakari\'{c}, Marija and Mateti\'{c}, Maja}, editor = {Biljanovi\'{c}, P.}, year = {2018}, pages = {820-824}, keywords = {Linear model, regularization, prediction of student success, lasso regression, ridge regression}, title = {Applying advanced linear models in the task of predicting student success}, keyword = {Linear model, regularization, prediction of student success, lasso regression, ridge regression}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }

Časopis indeksira:


  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font