Pregled bibliografske jedinice broj: 942851
Application of linear, nonlinear and artificial neural network modelling for description of the medical plants extraction process
Application of linear, nonlinear and artificial neural network modelling for description of the medical plants extraction process // Proceedings of 3rd Natural resources, green technology and sustainable development / Radojčić Redovniković, Ivana ; Jakovljević, Tamara ; Petravić Tominac, Vlatka ; Panić, Manuela ; Stojaković, Renata ; Erdec, Dina ; Radošević, Kristina ; Gaurina Srček, Višnja ; Cvjetko Bubalo, Marina (ur.).
Zagreb: Prehrambeno-biotehnološki fakultet Sveučilišta u Zagrebu, 2018. str. 45-50 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 942851 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Application of linear, nonlinear and artificial neural network modelling for description of the medical plants extraction process
Autori
Jurina ; Tamara ; Cvetković, Ana-Marija ; Benković, Maja ; Jurinjak Tušek, Ana ; Valinger, Davor ; Gajdoš Kljusurić, Jasenka
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 3rd Natural resources, green technology and sustainable development
/ Radojčić Redovniković, Ivana ; Jakovljević, Tamara ; Petravić Tominac, Vlatka ; Panić, Manuela ; Stojaković, Renata ; Erdec, Dina ; Radošević, Kristina ; Gaurina Srček, Višnja ; Cvjetko Bubalo, Marina - Zagreb : Prehrambeno-biotehnološki fakultet Sveučilišta u Zagrebu, 2018, 45-50
ISBN
978-953-6893-12-6
Skup
3rd Natural resources green technology & sustainable development-GREEN/3
Mjesto i datum
Zagreb, Hrvatska, 05.06.2018. - 08.06.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
linear model, nonlinear model, artificial neural network, medical herb extract
Sažetak
The objectives of this study were to use multiple linear regression (MLR), nonlinear regression (NLR), piecewise linear regression (PLR) and artificial neural network (ANN) modelling to analyse the effect of the extraction time, the extraction temperature and plant species on total dissolved solids, extraction yield, total polyphenols and antioxidant activity of three medical plants aqueous extracts. The aqueous extracts of plants from Lamiaceae family, lavender (Lavandula x hybrida L.), melissa (Melissa officinalis L.) and mint (Mentha L.) were prepared and sampled at regular time intervals (0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90 min) and analysed for physical and chemical properties. The performances of the proposed MLR, NLR, PLR and ANN models were evaluated based on correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability compared to other developed models. The relative importance of the variables on the physical and chemical properties of analysed extracts were also determined by global sensitivity analysis. It was determined that the extraction time showed the highest influence on physical and chemical properties of analysed medical herbs extracts.
Izvorni jezik
Engleski
Znanstvena područja
Biotehnologija, Prehrambena tehnologija
POVEZANOST RADA
Ustanove:
Prehrambeno-biotehnološki fakultet, Zagreb
Profili:
Tamara Jurina
(autor)
Maja Benković
(autor)
Ana Jurinjak Tušek
(autor)
Davor Valinger
(autor)
Jasenka Gajdoš Kljusurić
(autor)