Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 942612

Prediction of organic carbon and calcium carbonates in agricultural soils with Vis-NIR spectroscopy


Miloš, Boško; Bensa, Aleksandra
Prediction of organic carbon and calcium carbonates in agricultural soils with Vis-NIR spectroscopy // Poljoprivreda (Osijek), 24 (2018), 1; 45-51 doi:10.18047/poljo.24.1.6 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 942612 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Prediction of organic carbon and calcium carbonates in agricultural soils with Vis-NIR spectroscopy

Autori
Miloš, Boško ; Bensa, Aleksandra

Izvornik
Poljoprivreda (Osijek) (1330-7142) 24 (2018), 1; 45-51

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
diffuse reflectance spectroscopy ; PLSR ; regression ; SVMR

Sažetak
The objectives of this study were to (i) evaluate the ability of Vis-NIR spectroscopy to predict soil organic carbon (SOC) and CaCO3 content in the heterogeneous agricultural soils from Dalmatia, Croatia and (ii) to compare the performance of two multivariate calibration techniques: partial least square regression (PLSR) and support vector machine regression (SVMR). The reflectance spectra of a total of 250 top-soils (0-25 cm) samples were collected in the laboratory using a portable Terra Spec 4 Hi-Res Mineral Spectrometer with a wavelength range 350-2500 nm. The coefficient of determination (R2), the residual prediction deviation (RPD) and the root mean square error (RMSE) were used for the model evaluation. The CaCO3 prediction derived by PLSR and SVMR with R2 (0.86 and 0.88) and RPD (2.67 and 2.82), respectively are considered good prediction models. The SOC prediction with SVMR (R2 0.84 and RPD 2.43) indicates good prediction and approximate quantitative prediction with PLSR with R2 of 0.78 and RPD of 1.94. Our results showed that (i) CaCO3 and SOC estimations were obtained with acceptable accuracy using Vis-NIR spectroscopy, (ii) the SVMR method produced more accurate estimations of selected soil properties compared to LSR, and (iii) Vis-NIR spectroscopy, in combination with SWMR can be recommended as a rapid and inexpensive method for screening of the CaCO3 and SOC content.

Izvorni jezik
Engleski

Znanstvena područja
Poljoprivreda (agronomija)



POVEZANOST RADA


Ustanove:
Agronomski fakultet, Zagreb

Profili:

Avatar Url Boško Miloš (autor)

Avatar Url Aleksandra Bensa (autor)

Poveznice na cjeloviti tekst rada:

doi hrcak.srce.hr

Citiraj ovu publikaciju:

Miloš, Boško; Bensa, Aleksandra
Prediction of organic carbon and calcium carbonates in agricultural soils with Vis-NIR spectroscopy // Poljoprivreda (Osijek), 24 (2018), 1; 45-51 doi:10.18047/poljo.24.1.6 (međunarodna recenzija, članak, znanstveni)
Miloš, B. & Bensa, A. (2018) Prediction of organic carbon and calcium carbonates in agricultural soils with Vis-NIR spectroscopy. Poljoprivreda (Osijek), 24 (1), 45-51 doi:10.18047/poljo.24.1.6.
@article{article, author = {Milo\v{s}, Bo\v{s}ko and Bensa, Aleksandra}, year = {2018}, pages = {45-51}, DOI = {10.18047/poljo.24.1.6}, keywords = {diffuse reflectance spectroscopy, PLSR, regression, SVMR}, journal = {Poljoprivreda (Osijek)}, doi = {10.18047/poljo.24.1.6}, volume = {24}, number = {1}, issn = {1330-7142}, title = {Prediction of organic carbon and calcium carbonates in agricultural soils with Vis-NIR spectroscopy}, keyword = {diffuse reflectance spectroscopy, PLSR, regression, SVMR} }
@article{article, author = {Milo\v{s}, Bo\v{s}ko and Bensa, Aleksandra}, year = {2018}, pages = {45-51}, DOI = {10.18047/poljo.24.1.6}, keywords = {diffuse reflectance spectroscopy, PLSR, regression, SVMR}, journal = {Poljoprivreda (Osijek)}, doi = {10.18047/poljo.24.1.6}, volume = {24}, number = {1}, issn = {1330-7142}, title = {Prediction of organic carbon and calcium carbonates in agricultural soils with Vis-NIR spectroscopy}, keyword = {diffuse reflectance spectroscopy, PLSR, regression, SVMR} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)


Uključenost u ostale bibliografske baze podataka::


  • CAB Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font