Pregled bibliografske jedinice broj: 942361
Artificial neural networks implementation potentials - a literature review
Artificial neural networks implementation potentials - a literature review // Proceeding of the 2nd International statistical conference in Croatia - ISCCRO'18 / Dumičić, Ksenija ; Erjavec, Nataša ; Pejić Bach, Mirjana ; Žmuk, Berislav (ur.).
Zagreb: Hrvatsko statističko društvo, 2018. str. 86-93 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 942361 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Artificial neural networks implementation potentials
- a literature review
Autori
Mamula, Maja ; Duvnjak, Kristina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceeding of the 2nd International statistical conference in Croatia - ISCCRO'18
/ Dumičić, Ksenija ; Erjavec, Nataša ; Pejić Bach, Mirjana ; Žmuk, Berislav - Zagreb : Hrvatsko statističko društvo, 2018, 86-93
Skup
2nd International Statistical Conference in Croatia (ISCCRO 2018)
Mjesto i datum
Opatija, Hrvatska, 10.05.2018. - 11.05.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
artificial neural networks ; modelling and forecasting ; tourism
Sažetak
The significant worldwide growth of the tourism sector in the two past decades resulted in an increased number of researches and studies of tourism industry determinants. In analysing and modelling core tourism components, mostly using secondary data, different methods and technique are applied ; different forecast models are constructed and compared using different forecast error measures. The aim of this research is to provide a detailed outline of different quantitative methods and techniques, both the traditional ones as well as some emerging most sophisticated methods used in modelling and forecasting tourism. Beside the various methods, there is a large variety of explanatory variables selection in constructing forecast models and explaining some core tourism industry components. This paper reviews the published researches and studies that use the Artificial Neural Networks in modelling and forecasting tourism industry. The most significant finding that resulted from the detailed desk research is that, beside their great implementation potentials, Artificial Neural Networks are underused in tourism analysing, although their forecast efficiency excel the usual traditional models.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija
Napomena
This paper has been financially supported by the
University of Rijeka, for the project ZP UNIRI 4/17.
POVEZANOST RADA
Projekti:
ZP UNIRI 4/17
Ustanove:
Fakultet za menadžment u turizmu i ugostiteljstvu, Opatija
Profili:
Maja Gregorić
(autor)