Pregled bibliografske jedinice broj: 942025
Traffic Sign Shape Detection and Classification based on the Segment Surface Occupancy Analysis and Correlation Comparisons
Traffic Sign Shape Detection and Classification based on the Segment Surface Occupancy Analysis and Correlation Comparisons // Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 25 (2018), Supplement 1; 23-31 doi:10.17559/TV-20150901133605 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 942025 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Traffic Sign Shape Detection and Classification based on the Segment Surface Occupancy Analysis and Correlation Comparisons
Autori
Keser, Tomislav ; Dejanović, Ivan
Izvornik
Tehnički vjesnik : znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku (1330-3651) 25
(2018), Supplement 1;
23-31
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
correlation comparison ; image analysis ; occupancy analysis ; traffic sign detection ; traffic sign recognition
Sažetak
This article addresses the issue of traffic sign recognition. It contributes to a growing body of research done by the automotive industry due to a necessity for ensuring better safety on the roads. This paper presents a novel method for traffic signs recognition. The implementation of the whole process of traffic sign recognition has a step-wise nature but the novelty is introduced into the traffic sign shape detection stage. The method is based on a new approach for traffic sign shape recognition based on the image content occupancy analysis. Further, the traffic sign content classification is based on a simplistic relational correlation analysis. The tests were performed on image data comprising various roads and lighting conditions. The test includes different sizes of templates used in the correlation comparison method. The results are presented in a manner of successfulness of the correct recognition.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Profili:
Tomislav Keser
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus