Pregled bibliografske jedinice broj: 942003
Koopman-based model predictive control of a nanometric positioning system
Koopman-based model predictive control of a nanometric positioning system // Proceedings of the 18th EUSPEN International Conference / Billington, D. ; Leach, R. K. ; Phillips, D. ; Riemer, O. ; Savio, E. (ur.).
Cranfield: European Society for Precision Engineering and Nanotechnology (EUSPEN), 2018. str. 75-76 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 942003 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Koopman-based model predictive control of a nanometric positioning system
Autori
Kamenar, Ervin ; Korda, Milan ; Zelenika, Saša ; Mezić, Igor ; Maćešić, Senka
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 18th EUSPEN International Conference
/ Billington, D. ; Leach, R. K. ; Phillips, D. ; Riemer, O. ; Savio, E. - Cranfield : European Society for Precision Engineering and Nanotechnology (EUSPEN), 2018, 75-76
ISBN
978-0-9957751-2-1
Skup
18th EUSPEN International Conference
Mjesto i datum
Venecija, Italija, 04.06.2018. - 08.06.2018
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Nonlinear disturbances ; nanometric positioning ; Koopman-based model predictive control ; modelling and validation
Sažetak
Nonlinear frictional disturbances limit the performances of high-precision mechatronics systems. Recently it was shown that nanometric positioning can be achieved only if these disturbances are identified, modelled and compensated for via suitable control approaches. A PID controller, complemented with feed-forward based on the Generalized Maxwell-slip model, allows hence to achieve nanometric positioning but its real-time implementation is difficult, whereas a self-tuning regulator enables nanometric positioning with a marked overshoot. Koopman-based model predictive control (MPC) is applied in this work instead. This approach allows “lifting” the nonlinear dynamics of the considered device into a higher dimensional space where its behaviour can be predicted by a linear system ; the computational complexity of the thus obtained controller is hence comparable to that of equivalent linear controllers. The resulting positioning performances are evaluated numerically in the MATLAB/Simulink environment and compared to those when the mechatronics device is driven by using different controllers. It is thus shown that the Koopman-based MPC virtually eliminates steady state errors, decreases the settling time and results in very small overshoots.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci