Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 940435

Percolation Theory for Color Diversity on Random Networks


Kadović, Andrea; Zlatić, Vinko
Percolation Theory for Color Diversity on Random Networks // Les Houches school “Evolution of Diversity”
Les Houches, Francuska, 2018. (poster, međunarodna recenzija, neobjavljeni rad, znanstveni)


CROSBI ID: 940435 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Percolation Theory for Color Diversity on Random Networks

Autori
Kadović, Andrea ; Zlatić, Vinko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni

Skup
Les Houches school “Evolution of Diversity”

Mjesto i datum
Les Houches, Francuska, 25.02.2018. - 02.03.2018

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
percolation ; phase transition on network ; color graph ; avoiding vulnerabilities

Sažetak
As a powerful but bare generalization of complex systems, network has typically been abstracted in previous percolation studies as a set of identical objects connected with identical kind of bonds. Recently, it was shown that the colored network, in which the color is an additional degree of freedom allocated to every either site or bond, is a more sensible representation of complex system subject to different classes of vulnerabilities. To quantify how network structure has effect on the diversity of classes (different number of colors and color distributions), we study the color-avoiding component, which nodes stay connected even when the extinction of any particular color occurs, and present the condition for existence of this component in a given network. We use a specified version of percolation theory which takes into account the sensibility of network to the disconnection of hole class of one color -- the color-avoiding percolation. Here we provide analytical and numerical evidence of a color affected mean- field critical behavior for a class of networks. To the contrary, we also find that the critical behavior stays color independent in networks defined with the long-tail degree distribution.

Izvorni jezik
Engleski

Znanstvena područja
Fizika, Interdisciplinarne prirodne znanosti



POVEZANOST RADA


Projekti:
EK-692194 - Institut Ruđer Bošković Twinning projekt: korak dalje za Zavod za teorijsku fiziku (RBI-T-WINNING) (Nesti, Fabrizio, EK ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Andrea Kadović (autor)

Avatar Url Vinko Zlatić (autor)


Citiraj ovu publikaciju:

Kadović, Andrea; Zlatić, Vinko
Percolation Theory for Color Diversity on Random Networks // Les Houches school “Evolution of Diversity”
Les Houches, Francuska, 2018. (poster, međunarodna recenzija, neobjavljeni rad, znanstveni)
Kadović, A. & Zlatić, V. (2018) Percolation Theory for Color Diversity on Random Networks. U: Les Houches school “Evolution of Diversity”.
@article{article, author = {Kadovi\'{c}, Andrea and Zlati\'{c}, Vinko}, year = {2018}, keywords = {percolation, phase transition on network, color graph, avoiding vulnerabilities}, title = {Percolation Theory for Color Diversity on Random Networks}, keyword = {percolation, phase transition on network, color graph, avoiding vulnerabilities}, publisherplace = {Les Houches, Francuska} }
@article{article, author = {Kadovi\'{c}, Andrea and Zlati\'{c}, Vinko}, year = {2018}, keywords = {percolation, phase transition on network, color graph, avoiding vulnerabilities}, title = {Percolation Theory for Color Diversity on Random Networks}, keyword = {percolation, phase transition on network, color graph, avoiding vulnerabilities}, publisherplace = {Les Houches, Francuska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font