Pregled bibliografske jedinice broj: 939846
Data-driven decision-making in classification algorithm selection
Data-driven decision-making in classification algorithm selection // Journal of Decision Systems, 27 (2018), Supl. 1; 248-255 doi:10.1080/12460125.2018.1468168 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 939846 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Data-driven decision-making in classification algorithm selection
Autori
Oreški, Dijana ; Begičević Ređep, Nina
Izvornik
Journal of Decision Systems (1246-0125) 27
(2018), Supl. 1;
248-255
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
data characteristics ; datadriven classification ; CRISP DM ; Decision-making ; metalearning
Sažetak
The selection of the appropriate classification algorithm for a given data-set is an important and complex issue, full of research challenges. In this paper, we present a developed meta- analysis-based framework to improve decision- making in the selection of classification algorithms based on data-set characteristics. We study the effectiveness of our proposed framework with 32 data-sets. Three classification algorithms– neural networks, decision trees, and k-nearest neighbours – were trained and applied to data-sets with different characteristics, aiming to review the performance of algorithms in the presence of noise in the data, the interaction between features, as well as a small or a large ratio between the number of instances and the number of features. Our results show that feature noise is the most important predictor of the decision regarding the choice of the classification algorithm, and data-driven classification is found to be useful in this scenario.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus