Pregled bibliografske jedinice broj: 93803
Projections of Inefficient DMU to Efficient Frontier
Projections of Inefficient DMU to Efficient Frontier // 2nd Croatian Congress of Mathematics / Šikić, Zvonimir; Šikić, Hrvoje; Tadić, Marko (ur.).
Zagreb: Hrvatsko matematičko društvo, 2000. str. 35-36 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 93803 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Projections of Inefficient DMU to Efficient Frontier
Autori
Boljunčić, Valter
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
2nd Croatian Congress of Mathematics
/ Šikić, Zvonimir; Šikić, Hrvoje; Tadić, Marko - Zagreb : Hrvatsko matematičko društvo, 2000, 35-36
Skup
2nd Croatian Congress of Mathematics
Mjesto i datum
Zagreb, Hrvatska, 15.06.2000. - 17.06.2000
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Data envelopment analysis (DEA); efficiency; decision making unit (DMU); efficient frontier; projection
Sažetak
Usually, when we apply DEA models, and the DMU under evaluation results as inefficient, we obtain a single efficient reference point which Pareto-dominates the DMU under evaluation. This point can also be interpreted as a target point on the frontier such that inefficient DMU should adopt its input/output mix to become efficient. In this work we are interested in the part of the efficient frontier of production possibility set that can be used as a set of referent points for inefficient DMU. These points are obtained from DMU under evaluation by applying changes, which form a polyhedral cone, to its inputs and outputs. We apply modified LP to obtain one projection point on the frontier of production possibility set along one of the edges of the cone of possible changes. Using the relationship between primal and dual program and applying parametric programming, where only RHS is changed, we obtain the desired subset of the efficient frontier.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija
POVEZANOST RADA