Pregled bibliografske jedinice broj: 937991
Convergence of the complex cyclic Jacobi methods and applications
Convergence of the complex cyclic Jacobi methods and applications // SIAM Conference on Applied Linear Algebra
Hong Kong, Kina, 2018. str. 122-122 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 937991 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Convergence of the complex cyclic Jacobi methods and applications
Autori
Begović Kovač, Erna ; Hari, Vjeran
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
SIAM Conference on Applied Linear Algebra
/ - , 2018, 122-122
Skup
SIAM Conference on Applied Linear Algebra (SIAM- ALA 2018)
Mjesto i datum
Hong Kong, Kina, 04.05.2018. - 08.05.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Jacobi methods ; eigenvalue problem ; generalized eigenvalue problem ; convergence ; pivot strategies
Sažetak
We prove global convergence of the complex Jacobi method for a large class of the generalized serial cyclic pivot strategies. We find a constant $\gamma<1$ such that for a given Hermitian matrix $A$ we have $S(A')\leq\gamma*S(A)$, where $A'$ is obtained from $A$ by applying one cycle of the Jacobi method and $S(.)$ stands for the off-norm. The theory of the Jacobi operators is used. The obtained results are applied to the generalized eigenvalue problem.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-3670 - Matične faktorizacije i blok dijagonalizacijski algoritmi (MFBDA) (Hari, Vjeran, HRZZ - 2014-09) ( CroRIS)