Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 937952

YouTube QoE Estimation from Encrypted Traffic: Comparison of Test Methodologies and Machine Learning Based Models


Oršolić, Irena; Sužnjević, Mirko; Skorin-Kapov, Lea
YouTube QoE Estimation from Encrypted Traffic: Comparison of Test Methodologies and Machine Learning Based Models // Proceedings of 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)
Sardinija, Italija, 2018. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 937952 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
YouTube QoE Estimation from Encrypted Traffic: Comparison of Test Methodologies and Machine Learning Based Models

Autori
Oršolić, Irena ; Sužnjević, Mirko ; Skorin-Kapov, Lea

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX) / - , 2018, 1-6

Skup
2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)

Mjesto i datum
Sardinija, Italija, 25.05.2018. - 01.06.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
QoE estimation, client-side monitoring, YouTube, machine learning, encrypted traffic

Sažetak
Over the last few years, different client-side QoE monitoring apps have been developed that benchmark the performance of popular video streaming services. Such tools also provide the means for collecting ground truth data when developing models to estimate or classify QoE and various KPIs from encrypted network traffic. We present a client-side YouTube QoE monitoring tool named ViQMon, which extracts YouTube performance data from the official app’s Stats for Nerds window, and is applicable on various devices and platforms (Android, iOS). We compare ViQMon to approaches relying on YouTube’s APIs, and show relevant differences in buffering and application behavior in cases when videos are embedded and when videos are played in the official YouTube app. We further use ViQMon together with the collection of network measurements in both a laboratory and commercial mobile network to collect a large dataset of almost 500 YouTube videos streamed under different network conditions. The dataset is used to build machine learning based models for estimating QoE and various application-layer KPIs solely from IP-level network traffic features. As such, the approach is applicable in the context of both TLS and QUIC traffic. The paper further compares and analyses the performance of the built models.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-UIP-2014-09-5605 - Kooperativno upravljanje iskustvenom kvalitetom upokretnim mrežama za interaktivne višemedijske aplikacije u računalom oblaku (Q-MANIC) (Skorin-Kapov, Lea, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mirko Sužnjević (autor)

Avatar Url Irena Oršolić (autor)

Avatar Url Lea Skorin-Kapov (autor)


Citiraj ovu publikaciju:

Oršolić, Irena; Sužnjević, Mirko; Skorin-Kapov, Lea
YouTube QoE Estimation from Encrypted Traffic: Comparison of Test Methodologies and Machine Learning Based Models // Proceedings of 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)
Sardinija, Italija, 2018. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Oršolić, I., Sužnjević, M. & Skorin-Kapov, L. (2018) YouTube QoE Estimation from Encrypted Traffic: Comparison of Test Methodologies and Machine Learning Based Models. U: Proceedings of 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX).
@article{article, author = {Or\v{s}oli\'{c}, Irena and Su\v{z}njevi\'{c}, Mirko and Skorin-Kapov, Lea}, year = {2018}, pages = {1-6}, keywords = {QoE estimation, client-side monitoring, YouTube, machine learning, encrypted traffic}, title = {YouTube QoE Estimation from Encrypted Traffic: Comparison of Test Methodologies and Machine Learning Based Models}, keyword = {QoE estimation, client-side monitoring, YouTube, machine learning, encrypted traffic}, publisherplace = {Sardinija, Italija} }
@article{article, author = {Or\v{s}oli\'{c}, Irena and Su\v{z}njevi\'{c}, Mirko and Skorin-Kapov, Lea}, year = {2018}, pages = {1-6}, keywords = {QoE estimation, client-side monitoring, YouTube, machine learning, encrypted traffic}, title = {YouTube QoE Estimation from Encrypted Traffic: Comparison of Test Methodologies and Machine Learning Based Models}, keyword = {QoE estimation, client-side monitoring, YouTube, machine learning, encrypted traffic}, publisherplace = {Sardinija, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font