Pregled bibliografske jedinice broj: 934962
Detection of strong mine presence indicators using intelligent algorithms
Detection of strong mine presence indicators using intelligent algorithms // The 15th International Symposium “Mine Action 2018.” Book of Papers / Adlešič, Đurđa ; Bajić, Milan ; Mateša Mateković, Nataša ; Modrušan, Zdravko ; Njari, Eugen ; Pavković, Nikola ; Trut, Damir (ur.).
Zagreb: Hrvatski centar za razminiranje - Centar za testiranje, razvoj i obuku (HCR-CTRO), 2018. str. 25-28 (predavanje, nije recenziran, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 934962 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Detection of strong mine presence indicators using intelligent algorithms
Autori
Horvat, Marko ; Žagar, Marinko ; Ivelja, Tamara
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
The 15th International Symposium “Mine Action 2018.” Book of Papers
/ Adlešič, Đurđa ; Bajić, Milan ; Mateša Mateković, Nataša ; Modrušan, Zdravko ; Njari, Eugen ; Pavković, Nikola ; Trut, Damir - Zagreb : Hrvatski centar za razminiranje - Centar za testiranje, razvoj i obuku (HCR-CTRO), 2018, 25-28
Skup
The 15th International Symposium "Mine Action 2018"
Mjesto i datum
Slano, Hrvatska, 09.04.2018. - 12.04.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Strong mine presence indicators, DNN, Rule Based System
Sažetak
Suspected Hazardous Area extent is a very important task. It can be done by using advanced computer vision methods and artificial intelligence algorithms on airborne and space imagery in order to extract new information of SHA and to detect indicators of mine presence. We introduce the concept and describe a procedure of strong mine presence indicators detection by using convolutional neural networks and rule-based inference. Also, we propose a recommender system that improves detection quality with interactive relevance feedback. Such a system may also assist in post-processing procedures and classification of indicators after their detection.
Izvorni jezik
Engleski
Znanstvena područja
Geofizika, Geodezija, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Tehničko veleučilište u Zagrebu