Pregled bibliografske jedinice broj: 934614
Some Results for Roman Domination Numbers on Cardinal Products of Paths and Cycles
Some Results for Roman Domination Numbers on Cardinal Products of Paths and Cycles // Kragujevac journal of mathematics, 38 (2014), 1; 83-94 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 934614 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Some Results for Roman Domination Numbers on Cardinal Products of Paths and Cycles
Autori
Klobučar, Antoaneta ; Puljić, Ivona
Izvornik
Kragujevac journal of mathematics (1450-9628) 38
(2014), 1;
83-94
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Roman dominating function, Roman domination number $\gamma_R$, cardinal product of paths, cardinal product of cycles
Sažetak
For a graph $G=(V, E)$, \emph{;a Roman dominating function}; (RDF) is a function $f \colon V \to \{;0, 1, 2\};$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. The weight of an RDF equals $w(f)=\sum_{;v\in V};f(v)=|V_1|+2|V_2|$ where $V_i=\{;v\in V: f(v)=i\};$, $i\in \{;1, 2\};$. An RDF for which $w(f)$ achieves its minimum is called \emph{;a}; $\gamma_R$\emph{;-function}; and its weight, denoted by $\gamma_R(G)$, is called \emph{;the Roman domination number};.\\ In this paper we determine a lower and the upper bounds for $\gamma_R(P_m\times P_n)$ as well as the exact value of $\displaystyle{;\lim_{;m, n\to \infty};\frac{;\gamma_R(P_m\times P_n)};{;mn};};$ where $P_m\times P_n$ stands for the cardinal product of two paths. We also present some results concerning the cardinal product of two cycles $C_m\times C_n$ as well as the exact value of $\displaystyle{;\lim_{;m, n\to \infty};\frac{;\gamma_R(C_m\times C_n)};{;mn};};$.
Izvorni jezik
Engleski
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus