Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 934614

Some Results for Roman Domination Numbers on Cardinal Products of Paths and Cycles


Klobučar, Antoaneta; Puljić, Ivona
Some Results for Roman Domination Numbers on Cardinal Products of Paths and Cycles // Kragujevac journal of mathematics, 38 (2014), 1; 83-94 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 934614 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Some Results for Roman Domination Numbers on Cardinal Products of Paths and Cycles

Autori
Klobučar, Antoaneta ; Puljić, Ivona

Izvornik
Kragujevac journal of mathematics (1450-9628) 38 (2014), 1; 83-94

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Roman dominating function, Roman domination number $\gamma_R$, cardinal product of paths, cardinal product of cycles

Sažetak
For a graph $G=(V, E)$, \emph{;a Roman dominating function}; (RDF) is a function $f \colon V \to \{;0, 1, 2\};$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. The weight of an RDF equals $w(f)=\sum_{;v\in V};f(v)=|V_1|+2|V_2|$ where $V_i=\{;v\in V: f(v)=i\};$, $i\in \{;1, 2\};$. An RDF for which $w(f)$ achieves its minimum is called \emph{;a}; $\gamma_R$\emph{;-function}; and its weight, denoted by $\gamma_R(G)$, is called \emph{;the Roman domination number};.\\ In this paper we determine a lower and the upper bounds for $\gamma_R(P_m\times P_n)$ as well as the exact value of $\displaystyle{;\lim_{;m, n\to \infty};\frac{;\gamma_R(P_m\times P_n)};{;mn};};$ where $P_m\times P_n$ stands for the cardinal product of two paths. We also present some results concerning the cardinal product of two cycles $C_m\times C_n$ as well as the exact value of $\displaystyle{;\lim_{;m, n\to \infty};\frac{;\gamma_R(C_m\times C_n)};{;mn};};$.

Izvorni jezik
Engleski



POVEZANOST RADA


Profili:

Avatar Url Antoaneta Klobučar (autor)


Citiraj ovu publikaciju:

Klobučar, Antoaneta; Puljić, Ivona
Some Results for Roman Domination Numbers on Cardinal Products of Paths and Cycles // Kragujevac journal of mathematics, 38 (2014), 1; 83-94 (međunarodna recenzija, članak, znanstveni)
Klobučar, A. & Puljić, I. (2014) Some Results for Roman Domination Numbers on Cardinal Products of Paths and Cycles. Kragujevac journal of mathematics, 38 (1), 83-94.
@article{article, author = {Klobu\v{c}ar, Antoaneta and Pulji\'{c}, Ivona}, year = {2014}, pages = {83-94}, keywords = {Roman dominating function, Roman domination number $\gamma\_R$, cardinal product of paths, cardinal product of cycles}, journal = {Kragujevac journal of mathematics}, volume = {38}, number = {1}, issn = {1450-9628}, title = {Some Results for Roman Domination Numbers on Cardinal Products of Paths and Cycles}, keyword = {Roman dominating function, Roman domination number $\gamma\_R$, cardinal product of paths, cardinal product of cycles} }
@article{article, author = {Klobu\v{c}ar, Antoaneta and Pulji\'{c}, Ivona}, year = {2014}, pages = {83-94}, keywords = {Roman dominating function, Roman domination number $\gamma\_R$, cardinal product of paths, cardinal product of cycles}, journal = {Kragujevac journal of mathematics}, volume = {38}, number = {1}, issn = {1450-9628}, title = {Some Results for Roman Domination Numbers on Cardinal Products of Paths and Cycles}, keyword = {Roman dominating function, Roman domination number $\gamma\_R$, cardinal product of paths, cardinal product of cycles} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font