Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 933775

System-Level Power Consumption Analysis of the Wearable Asthmatic Wheeze Quantification


Oletić, Dinko; Bilas, Vedran
System-Level Power Consumption Analysis of the Wearable Asthmatic Wheeze Quantification // Journal of Sensors, Volume 2018 (2018), 6564158, 18 doi:10.1155/2018/6564158 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 933775 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
System-Level Power Consumption Analysis of the Wearable Asthmatic Wheeze Quantification

Autori
Oletić, Dinko ; Bilas, Vedran

Izvornik
Journal of Sensors (1687-725X) Volume 2018 (2018); 6564158, 18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
low power, compressive sensing, wearable sensor, embedded system, smartphone

Sažetak
Long-term quantification of asthmatic wheezing envisions an m-Health sensor system consisting of a smartphone and a body-worn wireless acoustic sensor. As both devices are power constrained, the main criterion guiding the system design comes down to minimization of power consumption, while retaining sufficient respiratory sound classification accuracy (i.e., wheeze detection). Crucial for assessment of the system-level power consumption is the understanding of trade-off between power cost of computationally intensive local processing and communication. Therefore, we analyze power requirements of signal acquisition, processing, and communication in three typical operating scenarios: (1) streaming of uncompressed respiratory signal to a smartphone for classification, (2) signal streaming utilizing compressive sensing (CS) for reduction of data rate, and (3) respiratory sound classification onboard the wearable sensor. Study shows that the third scenario featuring the lowest communication cost enables the lowest total sensor system power consumption ranging from 328 to 428 μW. In such scenario, 32-bit ARM Cortex M3/M4 cores typically embedded within Bluetooth 4 SoC modules feature the optimal trade-off between onboard classification performance and consumption. On the other hand, study confirms that CS enables the most power-efficient design of the wearable sensor (216 to 357 μW) in the compressed signal streaming, the second scenario. In such case, a single low-power ARM Cortex-A53 core is sufficient for simultaneous real-time CS reconstruction and classification on the smartphone, while keeping the total system power within budget for uncompressed streaming.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Dinko Oletić (autor)

Avatar Url Vedran Bilas (autor)

Poveznice na cjeloviti tekst rada:

doi www.hindawi.com

Citiraj ovu publikaciju:

Oletić, Dinko; Bilas, Vedran
System-Level Power Consumption Analysis of the Wearable Asthmatic Wheeze Quantification // Journal of Sensors, Volume 2018 (2018), 6564158, 18 doi:10.1155/2018/6564158 (međunarodna recenzija, članak, znanstveni)
Oletić, D. & Bilas, V. (2018) System-Level Power Consumption Analysis of the Wearable Asthmatic Wheeze Quantification. Journal of Sensors, Volume 2018, 6564158, 18 doi:10.1155/2018/6564158.
@article{article, author = {Oleti\'{c}, Dinko and Bilas, Vedran}, year = {2018}, pages = {18}, DOI = {10.1155/2018/6564158}, chapter = {6564158}, keywords = {low power, compressive sensing, wearable sensor, embedded system, smartphone}, journal = {Journal of Sensors}, doi = {10.1155/2018/6564158}, volume = {Volume 2018}, issn = {1687-725X}, title = {System-Level Power Consumption Analysis of the Wearable Asthmatic Wheeze Quantification}, keyword = {low power, compressive sensing, wearable sensor, embedded system, smartphone}, chapternumber = {6564158} }
@article{article, author = {Oleti\'{c}, Dinko and Bilas, Vedran}, year = {2018}, pages = {18}, DOI = {10.1155/2018/6564158}, chapter = {6564158}, keywords = {low power, compressive sensing, wearable sensor, embedded system, smartphone}, journal = {Journal of Sensors}, doi = {10.1155/2018/6564158}, volume = {Volume 2018}, issn = {1687-725X}, title = {System-Level Power Consumption Analysis of the Wearable Asthmatic Wheeze Quantification}, keyword = {low power, compressive sensing, wearable sensor, embedded system, smartphone}, chapternumber = {6564158} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font