Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 932608

Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs


Jing, Li; Shen, Yichen; Dubček, Tena; Peurifoy, John; Skirlo, Scott; LeCun, Yann; Tegmark, Max; Soljačić, Marin
Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs // Proceedings of Machine Learning Research v. 70
Sydney, Australija, 2017. str. 1733-1741 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 932608 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs

Autori
Jing, Li ; Shen, Yichen ; Dubček, Tena ; Peurifoy, John ; Skirlo, Scott ; LeCun, Yann ; Tegmark, Max ; Soljačić, Marin

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of Machine Learning Research v. 70 / - , 2017, 1733-1741

Skup
International Conference on Machine Learning

Mjesto i datum
Sydney, Australija, 06.08.2017. - 11.08.2017

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
neural network, deep learning, unitary neural network

Sažetak
Using unitary (instead of general) matrices in artificial neural networks (ANNs) is a promising way to solve the gradient explosion/vanishing problem, as well as to enable ANNs to learn long- term correlations in the data. This approach appears particularly promising for Recurrent Neural Networks (RNNs). In this work, we present a new architecture for implementing an Efficient Unitary Neural Network (EUNNs) ; its main advantages can be summarized as follows. Firstly, the representation capacity of the unitary space in an EUNN is fully tunable, ranging from a subspace of SU(N) to the entire unitary space. Secondly, the computational complexity for training an EUNN is merely O(1) per parameter. Finally, we test the performance of EUNNs on the standard copying task, the pixel-permuted MNIST digit recognition benchmark as well as the Speech Prediction Test (TIMIT). We find that our architecture significantly outperforms both other state-of-the-art unitary RNNs and the LSTM architecture, in terms of the final performance and/or the wall-clock training speed. EUNNs are thus promising alternatives to RNNs and LSTMs for a wide variety of applications.

Izvorni jezik
Engleski

Znanstvena područja
Fizika, Računarstvo



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Tena Dubček (autor)

Avatar Url Marin Soljačić (autor)

Poveznice na cjeloviti tekst rada:

proceedings.mlr.press

Citiraj ovu publikaciju:

Jing, Li; Shen, Yichen; Dubček, Tena; Peurifoy, John; Skirlo, Scott; LeCun, Yann; Tegmark, Max; Soljačić, Marin
Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs // Proceedings of Machine Learning Research v. 70
Sydney, Australija, 2017. str. 1733-1741 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Jing, L., Shen, Y., Dubček, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M. & Soljačić, M. (2017) Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs. U: Proceedings of Machine Learning Research v. 70.
@article{article, author = {Jing, Li and Shen, Yichen and Dub\v{c}ek, Tena and Peurifoy, John and Skirlo, Scott and LeCun, Yann and Tegmark, Max and Solja\v{c}i\'{c}, Marin}, year = {2017}, pages = {1733-1741}, keywords = {neural network, deep learning, unitary neural network}, title = {Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs}, keyword = {neural network, deep learning, unitary neural network}, publisherplace = {Sydney, Australija} }
@article{article, author = {Jing, Li and Shen, Yichen and Dub\v{c}ek, Tena and Peurifoy, John and Skirlo, Scott and LeCun, Yann and Tegmark, Max and Solja\v{c}i\'{c}, Marin}, year = {2017}, pages = {1733-1741}, keywords = {neural network, deep learning, unitary neural network}, title = {Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs}, keyword = {neural network, deep learning, unitary neural network}, publisherplace = {Sydney, Australija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font