Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 926629

Tensor-based Offset-Sparsity Decomposition for Hyperspectral Image Classification


Tian, Long; Du, Qian; Younan Nicolas; Kopriva, Ivica
Tensor-based Offset-Sparsity Decomposition for Hyperspectral Image Classification // Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International / Tjuatja, Saibun ; Kunkee, David (ur.).
Piscataway (NJ): Institute of Electrical and Electronics Engineers (IEEE), 2017. str. 3656-3659 doi:10.1109/IGARSS.2017.8127791 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 926629 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Tensor-based Offset-Sparsity Decomposition for Hyperspectral Image Classification

Autori
Tian, Long ; Du, Qian ; Younan Nicolas ; Kopriva, Ivica

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International / Tjuatja, Saibun ; Kunkee, David - Piscataway (NJ) : Institute of Electrical and Electronics Engineers (IEEE), 2017, 3656-3659

ISBN
978-1-5090-4951-6

Skup
Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International

Mjesto i datum
Fort Worth (TX), Sjedinjene Američke Države, 23.07.2017. - 28.07.2017

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Tensor ; low-rank recovery ; spatial-spectral segmentation ; classification ; hyperspectral imagery

Sažetak
In this paper, the tensor-based offset-sparsity decomposition (TOSD) method, or low-rank and sparse decomposition, is applied to hyperspectral imagery, where the low-rank tensor is considered to be enhanced or pruned data and used for classification. In the tensor form of dataset, all the information of the original 3D data cube, includes spatial and spectral information, can be better reserved. To make the low-rank assumption more possibly true, spatial and spectral segmentations are conducted in a preprocessing step for the TOSD. The experimental results demonstrate the TOSD offers better performance than the matrix-based one, and the spatial-spectral segmentation can further improve the performance.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Računarstvo

Napomena
Rad je rezultat zanstvene suradnje Ivice Koprive sa Instituta Ruđer Bošković i profesorice Qian Du sa Mississippi State University, SAD. Rad nije dio formalno prihvaćenog znanstvenog projekta.



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Ivica Kopriva (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Tian, Long; Du, Qian; Younan Nicolas; Kopriva, Ivica
Tensor-based Offset-Sparsity Decomposition for Hyperspectral Image Classification // Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International / Tjuatja, Saibun ; Kunkee, David (ur.).
Piscataway (NJ): Institute of Electrical and Electronics Engineers (IEEE), 2017. str. 3656-3659 doi:10.1109/IGARSS.2017.8127791 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Tian, L., Du, Q., Younan Nicolas & Kopriva, I. (2017) Tensor-based Offset-Sparsity Decomposition for Hyperspectral Image Classification. U: Tjuatja, S. & Kunkee, D. (ur.)Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International doi:10.1109/IGARSS.2017.8127791.
@article{article, author = {Tian, Long and Du, Qian and Kopriva, Ivica}, year = {2017}, pages = {3656-3659}, DOI = {10.1109/IGARSS.2017.8127791}, keywords = {Tensor, low-rank recovery, spatial-spectral segmentation, classification, hyperspectral imagery}, doi = {10.1109/IGARSS.2017.8127791}, isbn = {978-1-5090-4951-6}, title = {Tensor-based Offset-Sparsity Decomposition for Hyperspectral Image Classification}, keyword = {Tensor, low-rank recovery, spatial-spectral segmentation, classification, hyperspectral imagery}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Fort Worth (TX), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Tian, Long and Du, Qian and Kopriva, Ivica}, year = {2017}, pages = {3656-3659}, DOI = {10.1109/IGARSS.2017.8127791}, keywords = {Tensor, low-rank recovery, spatial-spectral segmentation, classification, hyperspectral imagery}, doi = {10.1109/IGARSS.2017.8127791}, isbn = {978-1-5090-4951-6}, title = {Tensor-based Offset-Sparsity Decomposition for Hyperspectral Image Classification}, keyword = {Tensor, low-rank recovery, spatial-spectral segmentation, classification, hyperspectral imagery}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Fort Worth (TX), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font