Pregled bibliografske jedinice broj: 924978
Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators
Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators // Analysis & PDE, 11 (2018), 4; 1049-1081 doi:10.2140/apde.2018.11.1049 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 924978 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators
Autori
Nakić, Ivica ; Täufer, Matthias ; Tautenhahn, Martin ; Veselić, Ivan
Izvornik
Analysis & PDE (1948-206X) 11
(2018), 4;
1049-1081
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
uncertainty relation, spectral inequality, Wegner estimate, control of heat equation, random Schroedinger operator
Sažetak
We prove a scale-free, quantitative unique continuation principle for functions in the range of the spectral projector χ ( − ∞ , E ] ( H L ) χ(−∞, E](HL) of a Schrödinger operator H L HL on a cube of side L ∈ N L∈ℕ, with bounded potential. Previously, such estimates were known only for individual eigenfunctions and for spectral projectors χ ( E − γ , E ] ( H L ) χ(E−γ, E](HL) with small γ γ. Such estimates are also called, depending on the context, uncertainty principles, observability estimates, or spectral inequalities. Our main application of such an estimate is to find lower bounds for the lifting of eigenvalues under semidefinite positive perturbations, which in turn can be applied to derive a Wegner estimate for random Schrödinger operators with nonlinear parameter-dependence. Another application is an estimate of the control cost for the heat equation in a multiscale domain in terms of geometric model parameters. Let us emphasize that previous uncertainty principles for individual eigenfunctions or spectral projectors onto small intervals were not sufficient to study such applications.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ 9345
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ivica Nakić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet