Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 924363

Modular forms, de Rham cohomology and congruences


Kazalicki, Matija; Scholl, Anthony J.
Modular forms, de Rham cohomology and congruences // Transactions of the American Mathematical Society, 368 (2016), 10; 7097-7117 doi:10.1090/tran/6595 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 924363 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Modular forms, de Rham cohomology and congruences

Autori
Kazalicki, Matija ; Scholl, Anthony J.

Izvornik
Transactions of the American Mathematical Society (0002-9947) 368 (2016), 10; 7097-7117

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
modular forms ; de Rham cohomology ; noncongruence subgroups

Sažetak
In this paper we show that Atkin and Swinnerton- Dyer type of congruences hold for weakly modular forms (modular forms that are permitted to have poles at cusps). Unlike the case of original congruences for cusp forms, these congruences are nontrivial even for congruence subgroups. On the way we provide an explicit interpretation of the de Rham cohomology groups associated to modular forms in terms of ``differentials of the second kind''. As an example, we consider the space of cusp forms of weight 3 on a certain genus zero quotient of Fermat curve $X^N+Y^N=Z^N$. We show that the Galois representation associated to this space is given by a Gr\"ossencharacter of the cyclotomic field $\Q(\zeta_N)$. Moreover, for $N=5$ the space does not admit a ``$p$-adic Hecke eigenbasis'' for (non-ordinary) primes $p\equiv 2, 3 \pmod{; ; ; ; ; 5}; ; ; ; ; $, which provides a counterexample to Atkin and Swinnerton-Dyer's original speculation.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Matija Kazalicki (autor)

Poveznice na cjeloviti tekst rada:

doi www.ams.org doi.org www.ams.org

Citiraj ovu publikaciju:

Kazalicki, Matija; Scholl, Anthony J.
Modular forms, de Rham cohomology and congruences // Transactions of the American Mathematical Society, 368 (2016), 10; 7097-7117 doi:10.1090/tran/6595 (međunarodna recenzija, članak, znanstveni)
Kazalicki, M. & Scholl, A. (2016) Modular forms, de Rham cohomology and congruences. Transactions of the American Mathematical Society, 368 (10), 7097-7117 doi:10.1090/tran/6595.
@article{article, author = {Kazalicki, Matija and Scholl, Anthony J.}, year = {2016}, pages = {7097-7117}, DOI = {10.1090/tran/6595}, keywords = {modular forms, de Rham cohomology, noncongruence subgroups}, journal = {Transactions of the American Mathematical Society}, doi = {10.1090/tran/6595}, volume = {368}, number = {10}, issn = {0002-9947}, title = {Modular forms, de Rham cohomology and congruences}, keyword = {modular forms, de Rham cohomology, noncongruence subgroups} }
@article{article, author = {Kazalicki, Matija and Scholl, Anthony J.}, year = {2016}, pages = {7097-7117}, DOI = {10.1090/tran/6595}, keywords = {modular forms, de Rham cohomology, noncongruence subgroups}, journal = {Transactions of the American Mathematical Society}, doi = {10.1090/tran/6595}, volume = {368}, number = {10}, issn = {0002-9947}, title = {Modular forms, de Rham cohomology and congruences}, keyword = {modular forms, de Rham cohomology, noncongruence subgroups} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts
  • CompuMath Citation Index
  • CompuMath Citation Index
  • ISI Alerting Services


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font