Pregled bibliografske jedinice broj: 924271
Identifying mathematical anxiety with MLP and RBF neural networks
Identifying mathematical anxiety with MLP and RBF neural networks // Mathematics education as a science and a profession / Kolar-Begović, Zdenka ; Kolar-Šuper, Ružica ; Jukić Matić, Ljerka (ur.).
Zagreb: Element ; Fakultet za odgojne i obrazovne znanosti Sveučilišta Josipa Jurja Strossmayera u Osijeku ; Odjel za matematiku Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2017. str. 250-257
CROSBI ID: 924271 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Identifying mathematical anxiety with MLP and RBF neural networks
Autori
Đurđević Babić, Ivana ; Milić, Tomislav ; Kozić, Ana
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Mathematics education as a science and a profession
Urednik/ci
Kolar-Begović, Zdenka ; Kolar-Šuper, Ružica ; Jukić Matić, Ljerka
Izdavač
Element ; Fakultet za odgojne i obrazovne znanosti Sveučilišta Josipa Jurja Strossmayera u Osijeku ; Odjel za matematiku Sveučilišta Josipa Jurja Strossmayera u Osijeku
Grad
Zagreb
Godina
2017
Raspon stranica
250-257
ISBN
978-953-197-592-6
Ključne riječi
mathematical anxiety, physical activity, neural network, MLP, RBF
Sažetak
This research addresses the problem of mathematical anxiety which is usually associated with inadequate mathematical performance and achievement. It aims to develop neural network model for classification of students according to the degree of mathematical anxiety in order to examine and better understand the relationship and effects of physical activity along with some other factors on mathematical anxiety. For this purpose, Multilayer Perceptron (MLP) and Radial Basis Function (RBF) neural networks were used. The results of this research showed that neural network models were efficient in identifying students’ mathematical anxiety. With the purpose of exploring the relationships between the mathematical anxiety and input variables, sensitivity analysis was conducted and reported for the model with the highest overall classification accuracy.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet za odgojne i obrazovne znanosti, Osijek
Profili:
Ivana Đurđević Babić
(autor)