Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 922397

Unsupervised Learning for Color Constancy


Banić, Nikola; Lončarić, Sven
Unsupervised Learning for Color Constancy // 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP 2018)
Funchal, Portugal, 2018. str. 181-188 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 922397 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Unsupervised Learning for Color Constancy

Autori
Banić, Nikola ; Lončarić, Sven

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP 2018) / - , 2018, 181-188

Skup
13th International Joint Conference on Computer Vision Theory and Applications (VISAPP 2018)

Mjesto i datum
Funchal, Portugal, 27.01.2018. - 29.01.2018

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Clustering, Color Constancy, Illumination Estimation, Unsupervised Learning, White Balancing

Sažetak
Most digital camera pipelines use color constancy methods to reduce the influence of illumination and camera sensor on the colors of scene objects. The highest accuracy of color correction is obtained with learning-based color constancy methods, but they require a significant amount of calibrated training images with known ground- truth illumination. Such calibration is time consuming, preferably done for each sensor individually, and therefore a major bottleneck in acquiring high color constancy accuracy. Statistics-based methods do not require calibrated training images, but they are less accurate. In this paper an unsupervised learning-based method is proposed that learns its parameter values after approximating the unknown ground-truth illumination of the training images, thus avoiding calibration. In terms of accuracy the proposed method outperforms all statistics-based and many state-of-the-art learning-based methods. The results are presented and discussed.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-2092 - Metode i algoritmi za poboljšanje slika u boji u stvarnom vremenu (PerfectColor) (Lončarić, Sven, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Sven Lončarić (autor)

Avatar Url Nikola Banić (autor)


Citiraj ovu publikaciju:

Banić, Nikola; Lončarić, Sven
Unsupervised Learning for Color Constancy // 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP 2018)
Funchal, Portugal, 2018. str. 181-188 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Banić, N. & Lončarić, S. (2018) Unsupervised Learning for Color Constancy. U: 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP 2018).
@article{article, author = {Bani\'{c}, Nikola and Lon\v{c}ari\'{c}, Sven}, year = {2018}, pages = {181-188}, keywords = {Clustering, Color Constancy, Illumination Estimation, Unsupervised Learning, White Balancing}, title = {Unsupervised Learning for Color Constancy}, keyword = {Clustering, Color Constancy, Illumination Estimation, Unsupervised Learning, White Balancing}, publisherplace = {Funchal, Portugal} }
@article{article, author = {Bani\'{c}, Nikola and Lon\v{c}ari\'{c}, Sven}, year = {2018}, pages = {181-188}, keywords = {Clustering, Color Constancy, Illumination Estimation, Unsupervised Learning, White Balancing}, title = {Unsupervised Learning for Color Constancy}, keyword = {Clustering, Color Constancy, Illumination Estimation, Unsupervised Learning, White Balancing}, publisherplace = {Funchal, Portugal} }

Časopis indeksira:


  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font