Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 922341

Debunking Sentiment Lexicons: A Case of Domain-Specific Sentiment Classification for Croatian


Gombar, Paula; Medić, Zoran; Alagić, Domagoj; Šnajder, Jan
Debunking Sentiment Lexicons: A Case of Domain-Specific Sentiment Classification for Croatian // Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing
Valencia, Španjolska, 2017. str. 54-59 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 922341 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Debunking Sentiment Lexicons: A Case of Domain-Specific Sentiment Classification for Croatian

Autori
Gombar, Paula ; Medić, Zoran ; Alagić, Domagoj ; Šnajder, Jan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing / - , 2017, 54-59

ISBN
978-1-945626-45-6

Skup
The 6th Workshop on Balto-Slavic Natural Language Processing

Mjesto i datum
Valencia, Španjolska, 04.04.2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Lexical semantics ; Sentiment analysis ; Sentiment lexicons ; Croatian ; Natural language processing

Sažetak
Sentiment lexicons are widely used as an intuitive and inexpensive way of tackling sentiment classification, often within a simple lexicon word-counting approach or as part of a supervised model. However, it is an open question whether these approaches can compete with supervised models that use only word- representation features. We address this question in the context of domain- specific sentiment classification for Croatian. We experiment with the graph- based acquisition of sentiment lexicons, analyze their quality, and investigate how effectively they can be used in sentiment classification. Our results indicate that, even with as few as 500 labeled instances, a supervised model substantially outperforms a word-counting model. We also observe that adding lexicon-based features does not significantly improve supervised sentiment classification.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
PoC6-1-147

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Jan Šnajder (autor)

Avatar Url Domagoj Alagić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Gombar, Paula; Medić, Zoran; Alagić, Domagoj; Šnajder, Jan
Debunking Sentiment Lexicons: A Case of Domain-Specific Sentiment Classification for Croatian // Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing
Valencia, Španjolska, 2017. str. 54-59 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gombar, P., Medić, Z., Alagić, D. & Šnajder, J. (2017) Debunking Sentiment Lexicons: A Case of Domain-Specific Sentiment Classification for Croatian. U: Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing.
@article{article, author = {Gombar, Paula and Medi\'{c}, Zoran and Alagi\'{c}, Domagoj and \v{S}najder, Jan}, year = {2017}, pages = {54-59}, keywords = {Lexical semantics, Sentiment analysis, Sentiment lexicons, Croatian, Natural language processing}, isbn = {978-1-945626-45-6}, title = {Debunking Sentiment Lexicons: A Case of Domain-Specific Sentiment Classification for Croatian}, keyword = {Lexical semantics, Sentiment analysis, Sentiment lexicons, Croatian, Natural language processing}, publisherplace = {Valencia, \v{S}panjolska} }
@article{article, author = {Gombar, Paula and Medi\'{c}, Zoran and Alagi\'{c}, Domagoj and \v{S}najder, Jan}, year = {2017}, pages = {54-59}, keywords = {Lexical semantics, Sentiment analysis, Sentiment lexicons, Croatian, Natural language processing}, isbn = {978-1-945626-45-6}, title = {Debunking Sentiment Lexicons: A Case of Domain-Specific Sentiment Classification for Croatian}, keyword = {Lexical semantics, Sentiment analysis, Sentiment lexicons, Croatian, Natural language processing}, publisherplace = {Valencia, \v{S}panjolska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font