Pregled bibliografske jedinice broj: 92073
Microlocal energy density for hyperbolic systems
Microlocal energy density for hyperbolic systems // Applied Mathematics and Scientific computing / Drmač, Z.; Hari V.; Sopta L.; Tutek Z.; Veselić K. (ur.).
Zagreb: Matematički odsjek Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, 2001. str. 14-14 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 92073 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Microlocal energy density for hyperbolic systems
Autori
Lazar, Martin ; Antonić, Nenad
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Applied Mathematics and Scientific computing
/ Drmač, Z.; Hari V.; Sopta L.; Tutek Z.; Veselić K. - Zagreb : Matematički odsjek Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, 2001, 14-14
Skup
Applied Mathematics and Scientific computing
Mjesto i datum
Dubrovnik, Hrvatska, 04.06.2001. - 08.06.2001
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
H-measure; hyperbolic system
Sažetak
Starting from the method for computing microlocal energy density, which was developed independently by G\'erard, and Francfort and Murat, we want to compute that very density for the hyperbolic system $$ A^0 \partial_0 v + \sum_1^d A^k \partial_k v + Bv = G. $$ The energy connected to the hyperbolic system is given by the relation $$ E:={1 \over 2} \langle A^0 v, v\rangle. $$ We want to express the energy limit of the sequence of initial problems with the energy of initial conditions. The basic calculus tool are H-measures (also known as microlocal defect measures). We associate an H-measure to the sequence of gradients of solutions to our system and it represents the desired microlocal energy density. We have determined the equation satisfied by the corresponding H-measure. In the case of the constant coefficients it reduces to a hyperbolic system similar to the initial one. Rewriting the wave equation as a hyperbolic system, we calculated the associated H-measure for the oscillating sequence of the initial conditions. The result is analogous to the one obtained by the direct calculus of H-measure from the D'Alembert's formula for the solution of the wave equation.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037015
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb