Pregled bibliografske jedinice broj: 920239
Torsion points on rational elliptic curves over the compositum of all cubic fields
Torsion points on rational elliptic curves over the compositum of all cubic fields // Mathematics of computation, 87 (2018), 309; 425-458 doi:10.1090/mcom/3213 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 920239 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Torsion points on rational elliptic curves over the compositum of all cubic fields
Autori
Daniels, Harris ; Lozano-Robledo, Alvaro ; Najman, Filip ; Sutherland, Andrew
Izvornik
Mathematics of computation (0025-5718) 87
(2018), 309;
425-458
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
elliptic curves ; torsion
Sažetak
Let E/Q be an elliptic curve and let Q(3∞) be the compositum of all cubic extensions of Q. In this article we show that the torsion subgroup of E(Q(3∞)) is finite and determine 20 possibilities for its structure, along with a complete description of the Q-isomorphism classes of elliptic curves that fall into each case. We provide rational parameterizations for each of the 16 torsion structures that occur for infinitely many Q-isomorphism classes of elliptic curves, and a complete list of j-invariants for each of the 4 that do not.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Filip Najman
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus