Pregled bibliografske jedinice broj: 920135
L^2(G)-linear independence for systems generated by dual integrable representations of LCA groups
l^2(G)-linear independence for systems generated by dual integrable representations of LCA groups // Collectanea mathematica, 68 (2017), 3; 323-337 doi:10.1007/s13348-016-0175-1 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 920135 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
L^2(G)-linear independence for systems generated by dual integrable representations of LCA groups
Autori
Slamić, Ivana
Izvornik
Collectanea mathematica (0010-0757) 68
(2017), 3;
323-337
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Dual integrable representation ; T-cyclic subspace ; Bracket function ; l^2(G)-linear independence ; Vilenkin group ; Gabor system
Sažetak
Let T be a dual integrable representation of a countable discrete LCA group G acting on a Hilbert space H. We consider the problem of characterizing l^2(G)-linear independence of the system B_ψ={; ; ; T_g(ψ):g∈G}; ; ; for a given function ψ∈H in terms of the bracket function. The characterization theorem is obtained for the case when G is a uniform lattice of the p-adic Vilenkin group acting by translations and a partial answer is given for the case when B_ψ is the Gabor system.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Ivana Slamić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus