Pregled bibliografske jedinice broj: 916983
Big Data and New Data Warehousing Approaches
Big Data and New Data Warehousing Approaches // Proceedings of the 2017 International Conference on Cloud and Big Data Computing
London, Ujedinjeno Kraljevstvo: The Association for Computing Machinery (ACM), 2017. str. 6-10 doi:10.1145/3141128.3141139 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 916983 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Big Data and New Data Warehousing Approaches
Autori
Ptiček, Marina ; Vrdoljak, Boris
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2017 International Conference on Cloud and Big Data Computing
/ - : The Association for Computing Machinery (ACM), 2017, 6-10
ISBN
978-1-4503-5343-4
Skup
International Conference on Cloud and Big Data Computing (ICCBDC 2017)
Mjesto i datum
London, Ujedinjeno Kraljevstvo, 17.09.2017. - 19.09.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
databases ; data warehouse ; big data ; MapReduce ; NoSQL ; NewSQL
Sažetak
Big data are a data trend present around us mainly through Internet – social networks and smart devices and meters – mostly without us being aware of them. Also they are a fact that both industry and scientific research needs to deal with. They are interesting from analytical point of view, for they contain knowledge that cannot be ignored and left unused. Traditional system that supports the advanced analytics and knowledge extraction – data warehouse – is not able to cope with large amounts of fast incoming various and unstructured data, and may be facing a paradigm shift in terms of utilized concepts, technologies and methodologies, which have become a very active research area in the last few years. This paper provides an overview of research trends important for the big data warehousing, concepts and technologies used for data storage and (ETL) processing, and research approaches done in attempts to empower traditional data warehouses for handling big data.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb