Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 916801

ANFIS Used as a Maximum Power Point Tracking Algorithm for a Photovoltaic System


Mlakić, Dragan; Majdandžić, Ljubomir; Nikolovski, Srete
ANFIS Used as a Maximum Power Point Tracking Algorithm for a Photovoltaic System // International journal of electrical and computer engineering systems, 8 (2017), 2; 10843, 13 doi:10.11591/ijece.v8i2.pp867-879 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 916801 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
ANFIS Used as a Maximum Power Point Tracking Algorithm for a Photovoltaic System

Autori
Mlakić, Dragan ; Majdandžić, Ljubomir ; Nikolovski, Srete

Izvornik
International journal of electrical and computer engineering systems (1847-6996) 8 (2017), 2; 10843, 13

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Artificial intelligence, Adaptive neuro-fuzzy inference system, Maximum Power Point Tracking (MPPT), PV System,
(Artificial intelligence, Adaptive neuro-fuzzy inference system, Maximum Power Point Tracking (MPPT), PV System)

Sažetak
Photovoltaic (PV) modules play an important role in modern distribution networks ; however, from the beginning, PV modules have mostly been used in order to produce clean, green energy and to make a profit. Working effectively during the day, PV systems tend to achieve a maximum power point accomplished by inverters with built-in Maximum Power Point Tracking (MPPT) algorithms. This paper presents an Adaptive Neuro-Fuzzy Inference System (ANFIS), as a method for predicting an MPP based on data on solar exposure and the surrounding temperature. The advantages of the proposed method are a fast response, non-invasive sampling, total harmonic distortion reduction, more efficient usage of PV modules and a simple training of the ANFIS algorithm. To demonstrate the effectiveness and accuracy of the ANFIS in relation to the MPPT algorithm, a practical sample case of 10 kW PV system and its measurements are used as a model for simulation. Modelling and simulations are performed using all available components provided by technical data. The results obtained from the simulations point to the more efficient usage of the ANFIS model proposed as an MPPT algorithm for PV modules in comparison to other existing methods.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Ljubomir Majdandžić (autor)

Avatar Url Srete Nikolovski (autor)

Poveznice na cjeloviti tekst rada:

doi iaescore.com doi.org

Citiraj ovu publikaciju:

Mlakić, Dragan; Majdandžić, Ljubomir; Nikolovski, Srete
ANFIS Used as a Maximum Power Point Tracking Algorithm for a Photovoltaic System // International journal of electrical and computer engineering systems, 8 (2017), 2; 10843, 13 doi:10.11591/ijece.v8i2.pp867-879 (međunarodna recenzija, članak, znanstveni)
Mlakić, D., Majdandžić, L. & Nikolovski, S. (2017) ANFIS Used as a Maximum Power Point Tracking Algorithm for a Photovoltaic System. International journal of electrical and computer engineering systems, 8 (2), 10843, 13 doi:10.11591/ijece.v8i2.pp867-879.
@article{article, author = {Mlaki\'{c}, Dragan and Majdand\v{z}i\'{c}, Ljubomir and Nikolovski, Srete}, year = {2017}, pages = {13}, DOI = {10.11591/ijece.v8i2.pp867-879}, chapter = {10843}, keywords = {Artificial intelligence, Adaptive neuro-fuzzy inference system, Maximum Power Point Tracking (MPPT), PV System,}, journal = {International journal of electrical and computer engineering systems}, doi = {10.11591/ijece.v8i2.pp867-879}, volume = {8}, number = {2}, issn = {1847-6996}, title = {ANFIS Used as a Maximum Power Point Tracking Algorithm for a Photovoltaic System}, keyword = {Artificial intelligence, Adaptive neuro-fuzzy inference system, Maximum Power Point Tracking (MPPT), PV System,}, chapternumber = {10843} }
@article{article, author = {Mlaki\'{c}, Dragan and Majdand\v{z}i\'{c}, Ljubomir and Nikolovski, Srete}, year = {2017}, pages = {13}, DOI = {10.11591/ijece.v8i2.pp867-879}, chapter = {10843}, keywords = {Artificial intelligence, Adaptive neuro-fuzzy inference system, Maximum Power Point Tracking (MPPT), PV System}, journal = {International journal of electrical and computer engineering systems}, doi = {10.11591/ijece.v8i2.pp867-879}, volume = {8}, number = {2}, issn = {1847-6996}, title = {ANFIS Used as a Maximum Power Point Tracking Algorithm for a Photovoltaic System}, keyword = {Artificial intelligence, Adaptive neuro-fuzzy inference system, Maximum Power Point Tracking (MPPT), PV System}, chapternumber = {10843} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font