Pregled bibliografske jedinice broj: 915926
Redescription Mining with Multi-target Predictive Clustering Trees
Redescription Mining with Multi-target Predictive Clustering Trees // New Frontiers in Mining Complex Patterns, 4th International Workshop, NFMCP 2015, Held in Conjunction with ECML-PKDD 2015 : Conference proceedings
Porto, Portugal: Springer, 2016. str. 125-143 doi:10.1007/978-3-319-39315-5_9 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 915926 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Redescription Mining with Multi-target Predictive Clustering Trees
Autori
Mihelčić, Matej ; Džeroski, Sašo ; Lavrač, Nada ; Šmuc, Tomislav
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
New Frontiers in Mining Complex Patterns, 4th International Workshop, NFMCP 2015, Held in Conjunction with ECML-PKDD 2015 : Conference proceedings
/ - : Springer, 2016, 125-143
Skup
New Frontiers in Mining Complex Patterns
Mjesto i datum
Porto, Portugal, 07.09.2015
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Knowledge discovery ; Redescription mining ; Predictive clustering trees ; World countries
Sažetak
Redescription mining is a field of knowledge discovery that aims to find different descriptions of subsets of elements in the data by using two or more disjoint sets of descriptive attributes. The ability to find connections between different sets of descriptive attributes and provide a more comprehensive set of rules makes it very useful in practice. In this work, we introduce redescription mining algorithm for generating and iteratively improving a redescription set of user defined size based on multi-target Predictive Clustering Trees. This approach uses information about element membership in different generated rules to search for new redescriptions and is able to produce highly accurate, statistically significant redescriptions described by Boolean, nominal or numeric attributes. As opposed to current tree- based approaches that use multi-class or binary classification, we explore benefits of using multi target classification and regression to create redescriptions. The process of iterative redescription set improvement is illustrated on the dataset describing 199 world countries and their trading patterns. The performance of the algorithm is compared against the state of the art redescription mining algorithms.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
IP-2013-11-9623 - Postupci strojnog učenja za dubinsku analizu složenih struktura podataka (DescriptiveInduction) (Gamberger, Dragan, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus