Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 912286

Direct Observation of Photoinduced Ultrafast Generation of Singlet and Triplet Quinone Methides in Aqueous Solutions and Insight into the Roles of Acidic and Basic Sites in Quinone Methide Formation


Ma, Jiani; Zhang, Xiting; Basarić, Nikola; Phillips, David Lee
Direct Observation of Photoinduced Ultrafast Generation of Singlet and Triplet Quinone Methides in Aqueous Solutions and Insight into the Roles of Acidic and Basic Sites in Quinone Methide Formation // Journal of the American Chemical Society, 139 (2017), 2017; 18349-18357 doi:10.1021/jacs.7b10387 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 912286 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Direct Observation of Photoinduced Ultrafast Generation of Singlet and Triplet Quinone Methides in Aqueous Solutions and Insight into the Roles of Acidic and Basic Sites in Quinone Methide Formation

Autori
Ma, Jiani ; Zhang, Xiting ; Basarić, Nikola ; Phillips, David Lee

Izvornik
Journal of the American Chemical Society (0002-7863) 139 (2017), 2017; 18349-18357

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
ESPT ; Quinone methide ; Ultrafast transient absorption ; DFT calculations

Sažetak
Femtosecond time-resolved transient absorption spectroscopy experiments and density functional theory computations were done for a mechanistic investigation of 3-(1-phenylvinyl)phenol (1) and 3-hydroxybenzophenone (2) in selected solvents. Both compounds went through an intersystem crossing (ISC) to form the triplet excited states Tππ* and Tnπ* in acetonitrile but behave differently in neutral aqueous solutions, in which a triplet excited state proton transfer (ESPT) induced by the ISC process is also proposed for 2 but a singlet ESPT without ISC is proposed for 1, leading to the production of the triplet quinone methide (QM) and the singlet excited QM species respectively in these two systems. The triplet QM then underwent an ISC process to form an unstable ground state intermediate which soon returned to its starting material 2. However, the singlet excited state QM went through an internal conversion process to the ground state QM followed by the formation of its final product in an irreversible manner. These differences are thought to be derived from the slow vinyl C–C rotation and the moderate basicity of the vinyl C atom in 1 as compared with the fast C–O rotation and the greater basicity of the carbonyl O atom of 2 after photoexcitation. This can account for the experimental results in the literature that the aromatic vinyl compounds undergo efficient singlet excited state photochemical reactions while the aromatic carbonyl compounds prefer triplet photochemical reactions under aqueous conditions. These results have fundamental and significant implications for understanding of the ESPT reactivity in general, as well as for the design of molecules for efficient QM formation in aqueous media with potential applications in cancer phototherapy.

Izvorni jezik
Engleski

Znanstvena područja
Kemija



POVEZANOST RADA


Projekti:
HRZZ-IP-2014-09-6312 - Supramolekulska kontrola fotokemijskih reakcija eliminacije (SupraPhotoE) (Basarić, Nikola, HRZZ - 2014-09) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Nikola Basarić (autor)

Poveznice na cjeloviti tekst rada:

doi pubs.acs.org

Citiraj ovu publikaciju:

Ma, Jiani; Zhang, Xiting; Basarić, Nikola; Phillips, David Lee
Direct Observation of Photoinduced Ultrafast Generation of Singlet and Triplet Quinone Methides in Aqueous Solutions and Insight into the Roles of Acidic and Basic Sites in Quinone Methide Formation // Journal of the American Chemical Society, 139 (2017), 2017; 18349-18357 doi:10.1021/jacs.7b10387 (međunarodna recenzija, članak, znanstveni)
Ma, J., Zhang, X., Basarić, N. & Phillips, D. (2017) Direct Observation of Photoinduced Ultrafast Generation of Singlet and Triplet Quinone Methides in Aqueous Solutions and Insight into the Roles of Acidic and Basic Sites in Quinone Methide Formation. Journal of the American Chemical Society, 139 (2017), 18349-18357 doi:10.1021/jacs.7b10387.
@article{article, author = {Ma, Jiani and Zhang, Xiting and Basaric\', Nikola and Phillips, David Lee}, year = {2017}, pages = {18349-18357}, DOI = {10.1021/jacs.7b10387}, keywords = {ESPT, Quinone methide, Ultrafast transient absorption, DFT calculations}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.7b10387}, volume = {139}, number = {2017}, issn = {0002-7863}, title = {Direct Observation of Photoinduced Ultrafast Generation of Singlet and Triplet Quinone Methides in Aqueous Solutions and Insight into the Roles of Acidic and Basic Sites in Quinone Methide Formation}, keyword = {ESPT, Quinone methide, Ultrafast transient absorption, DFT calculations} }
@article{article, author = {Ma, Jiani and Zhang, Xiting and Basaric\', Nikola and Phillips, David Lee}, year = {2017}, pages = {18349-18357}, DOI = {10.1021/jacs.7b10387}, keywords = {ESPT, Quinone methide, Ultrafast transient absorption, DFT calculations}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.7b10387}, volume = {139}, number = {2017}, issn = {0002-7863}, title = {Direct Observation of Photoinduced Ultrafast Generation of Singlet and Triplet Quinone Methides in Aqueous Solutions and Insight into the Roles of Acidic and Basic Sites in Quinone Methide Formation}, keyword = {ESPT, Quinone methide, Ultrafast transient absorption, DFT calculations} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE
  • Nature Index


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font