Pregled bibliografske jedinice broj: 908916
A spectral approach for quenched limit theorems for random expanding dynamical systems
A spectral approach for quenched limit theorems for random expanding dynamical systems // Communications in mathematical physics, 360 (2018), 3; 1121-1187 doi:10.1007/s00220-017-3083-7 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 908916 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A spectral approach for quenched limit theorems for random expanding dynamical systems
Autori
Dragičević, Davor ; Froyland, Gary ; Gonzalez- Tokman, Cecilia ; Vaienti, Sandro
Izvornik
Communications in mathematical physics (0010-3616) 360
(2018), 3;
1121-1187
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
limit theorems ; spectral method
Sažetak
We prove quenched versions of (i) a large deviations principle (LDP), (ii) a central limit theorem (CLT), and (iii) a local central limit theorem (LCLT) for non-autonomous dynamical systems. A key advance is the extension of the spectral method, commonly used in limit laws for deterministic maps, to the general random setting. We achieve this via multiplicative ergodic theory and the development of a general framework to control the regularity of Lyapunov exponents of \emph{; ; ; ; twisted transfer operator cocycles}; ; ; ; with respect to a twist parameter. While some versions of the LDP and CLT have previously been proved with other techniques, the local central limit theorem is, to our knowledge, a completely new result, and one that demonstrates the strength of our method. Applications include non-autonomous (piecewise) expanding maps, defined by random compositions of the form $T_{; ; ; ; \sigma^{; ; ; ; n- 1}; ; ; ; \omega}; ; ; ; \circ\cdots\circ T_{; ; ; ; \sigma\omega}; ; ; ; \circ T_\omega$. An important aspect of our results is that we only assume ergodicity and invertibility of the random driving $\sigma:\Omega\to\Omega$ ; in particular no expansivity or mixing properties are required.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-2285 - Geometrijska, ergodička i topološka analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Davor Dragičević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus