Pregled bibliografske jedinice broj: 907503
Isometry between two models of SL(2, R) geometry
Isometry between two models of SL(2, R) geometry // Conference on Geometry: Theory and Applications 2017 - Book of Abstracts / Lavička, Miroslav (ur.).
Plzeň: Vydavatelsky servis, 2017. str. 31-32 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 907503 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Isometry between two models of SL(2, R) geometry
Autori
Erjavec, Zlatko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Conference on Geometry: Theory and Applications 2017 - Book of Abstracts
/ Lavička, Miroslav - Plzeň : Vydavatelsky servis, 2017, 31-32
Skup
Conference on Geometry: Theory and Applications 2017
Mjesto i datum
Plzeň, Češka Republika, 26.06.2017. - 29.06.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
SL(2, R) geometry, isometry, homogeneous space
Sažetak
Among eight 3-dimensional homogeneous geometries, "twisted" product geometries SL(2, R), Nil and Sol are specific because they are structured as line bundles over hyperbolic, Euclidean and pseudo-Euclidean plane, respectively. Among these geometries, the SL(2, R) is the least researched and generally, because of its features presents a rich area for future investigation. Currently, there are two models of SL(2, R) geometry: the hyperboloid model of SL(2, R) geometry and the upper half-plane model of SL(2, R) geometry. In this talk we prove that the hyperboloid model and the upper half-plane model of SL(2, R) geometry are isometric. Having in mind that there are results in both models which are not quite comparable this isometry gives us an opportunity for transferring some of known results between models.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin
Profili:
Zlatko Erjavec
(autor)