Pregled bibliografske jedinice broj: 906532
Preponderantly increasing/decreasing data in regression analysis
Preponderantly increasing/decreasing data in regression analysis // Croatian operational research review, 7 (2016), 2; 269-276 doi:10.17535/crorr.2016.0018 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 906532 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Preponderantly increasing/decreasing data in
regression analysis
Autori
Marković, Darija
Izvornik
Croatian operational research review (1848-0225) 7
(2016), 2;
269-276
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
regression analysis, nonlinear least squares, existence problem, preponderant increase/decrease property, Chebyshev inequality
Sažetak
For the given data (wi, xi, yi), i = 1, ..., n, and the given model function f(x ; θ), where θ is a vector of unknown parameters, the goal of regression analysis is to obtain estimator θ^∗ of the unknown parameters θ such that the vector of residuals is minimized in some sense. The common approach to this problem of minimization is the least-squares method, that is minimizing the L2 norm of the vector of residuals. For nonlinear model functions, what is necessary is finding at least the sufficient conditions on the data that will guarantee the existence of the best least-squares estimator. In this paper we will describe and examine in detail the property of preponderant increase/decrease of the data, which ensures the existence of the best estimator for certain important nonlinear model functions.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Darija Marković
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- EconLit
Uključenost u ostale bibliografske baze podataka::
- EconLit
- INSPEC
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts