Pregled bibliografske jedinice broj: 906031
On k-geodetic graphs from symmetric (71, 15, 3)designs and their residual and derived designs
On k-geodetic graphs from symmetric (71, 15, 3)designs and their residual and derived designs // combinatorics 2014
Gaeta, Italija, 2014. str. 135-135 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 906031 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On k-geodetic graphs from symmetric (71, 15, 3)designs and their residual and derived designs
Autori
Rukavina, Sanja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Combinatorics 2014
/ - , 2014, 135-135
Skup
Combinatorics 2014
Mjesto i datum
Gaeta, Italija, 01.06.2014. - 06.06.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
k-geodetic graph, automorphism group
Sažetak
For every 2−(v, k, λ) design D with replication number r and b blocks it is possible to construct k−connected biregular block K∗ v(r, k, λ)of diameter 4 or 5 with vertex degrees r and k, in which there are at most µ paths of minimum length between any pair of vertices, where µ = max{;max{;|Bi ∩Bj| : i, j = 1, 2, ..., b, i 6= j};, λ};, B1, B2, ..., Bb being blocks of the design [2]. In [1] we study k-geodetic graphs constructed from known triplanes of order twelve and their residual and derived designs. [1] D.Crnković, S.Rukavina, L.Simčić: On triplanes of order twelve admitting an automorphism of order six and their binary and ternary codes, Utilitas Math, in press [2] N.Srinivasan, J.Opatrny, V.S.Alagar: Construction of Geodetic and Bigeodetic Blocks of Connectivity k ≥ 3 and their Relation to Block Designs, ArsCombin., 24(1987), 101–114.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Sanja Rukavina
(autor)