Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 905945

Scene text segmentation based on redundant representation of character candidates


Šarić, Matko
Scene text segmentation based on redundant representation of character candidates // Proceedings of the 25th International Conference on Computer Graphics, Visualization and Computer Vision, 2017
Plzeň, Češka Republika, 2017. str. 103-110 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 905945 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Scene text segmentation based on redundant representation of character candidates

Autori
Šarić, Matko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 25th International Conference on Computer Graphics, Visualization and Computer Vision, 2017 / - , 2017, 103-110

Skup
25th International Conference on Computer Graphics, Visualization and Computer Vision 2017

Mjesto i datum
Plzeň, Češka Republika, 29.05.2017. - 02.06.2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Scene text segmentation, extremal regions, SVM classification

Sažetak
Text segmentation is important step in extraction of textual information from natural scene images. This paper proposes novel method for generation of character candidate regions based on redundant representation of subpaths in extremal regions (ER) tree. These subpaths are constructed using area variation and pruned using their length: each sufficiently long subpath is character candidate which is represented by subset of regions contained in the subpath. Mean SVM probability score of regions in subset is used to filter out non character components. Proposed approach for character candidates generation is followed by character grouping and restoration steps. Experimental results obtained on the ICDAR 2013 dataset shows that the proposed text segmentation method obtains second highest precision and competitive recall rate.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-UIP-2014-09-3875 - Pametna okruženja za poboljšanje kvalitete života (ELISE) (Russo, Mladen, HRZZ - 2014-09) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Matko Šarić (autor)


Citiraj ovu publikaciju:

Šarić, Matko
Scene text segmentation based on redundant representation of character candidates // Proceedings of the 25th International Conference on Computer Graphics, Visualization and Computer Vision, 2017
Plzeň, Češka Republika, 2017. str. 103-110 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Šarić, M. (2017) Scene text segmentation based on redundant representation of character candidates. U: Proceedings of the 25th International Conference on Computer Graphics, Visualization and Computer Vision, 2017.
@article{article, author = {\v{S}ari\'{c}, Matko}, year = {2017}, pages = {103-110}, keywords = {Scene text segmentation, extremal regions, SVM classification}, title = {Scene text segmentation based on redundant representation of character candidates}, keyword = {Scene text segmentation, extremal regions, SVM classification}, publisherplace = {Plze\v{n}, \v{C}e\v{s}ka Republika} }
@article{article, author = {\v{S}ari\'{c}, Matko}, year = {2017}, pages = {103-110}, keywords = {Scene text segmentation, extremal regions, SVM classification}, title = {Scene text segmentation based on redundant representation of character candidates}, keyword = {Scene text segmentation, extremal regions, SVM classification}, publisherplace = {Plze\v{n}, \v{C}e\v{s}ka Republika} }




Contrast
Increase Font
Decrease Font
Dyslexic Font