Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 905103

Single-channel Sparse Nonnegative Blind Source Separation Method for Automatic 3D Delineation of Lung Tumor in PET Images


Kopriva, Ivica; Ju, Wei; Zhang, Bin; Shi, Fei; Xiang, Dehui; Yu, Kai; Wang, Ximing; Bagci, Ulas; Chen, Xinjian
Single-channel Sparse Nonnegative Blind Source Separation Method for Automatic 3D Delineation of Lung Tumor in PET Images // IEEE Journal of Biomedical and Health Informatics, 21 (2017), 6; 1656-1666 doi:10.1109/JBHI.2016.2624798 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 905103 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Single-channel Sparse Nonnegative Blind Source Separation Method for Automatic 3D Delineation of Lung Tumor in PET Images

Autori
Kopriva, Ivica ; Ju, Wei ; Zhang, Bin ; Shi, Fei ; Xiang, Dehui ; Yu, Kai ; Wang, Ximing ; Bagci, Ulas ; Chen, Xinjian

Izvornik
IEEE Journal of Biomedical and Health Informatics (2168-2194) 21 (2017), 6; 1656-1666

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Single-channel blind source separation ; nonnegative matrix factorization ; sparseness ; lung tumor delineation ; positron emission tomography (PET)

Sažetak
In this paper, we propose a novel method for single-channel blind separation of non- overlapped sources and, to the best of our knowledge, apply it for the first time to automatic segmentation of lung tumors in Positron Emission Tomography (PET) images. Our approach first converts 3D PET image into a pseudo multichannel image. Afterwards, regularization free sparseness constrained nonnegative matrix factorization is used to separate tumor from other tissues. By using complexity based criterion, we select tumor component as the one with minimal complexity. We have compared the proposed method with threshold based on 40% and 50% maximum standardized uptake value (SUV), graph cuts (GC), random walks (RW) and affinity propagation (AP) algorithms on 18 non-small cell lung cancer datasets with respect to ground truth provided by two radiologists. Dice similarity coefficient averaged with respect to two ground truths is: 0.780.12 by the proposed algorithm, 0.780.1 by GC, 0.770.13 by AP, 0.770.07 by RW, and 0.750.13 by 50% maximum SUV threshold. Since the proposed method achieved performance comparable with interactive methods, considering the unique challenges of lung tumor segmentation from PET images, our findings support possibility of using our fully automated method in routine clinics. The source codes will be available at www.mipav.net/English/research/research.html .

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Ivica Kopriva (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Kopriva, Ivica; Ju, Wei; Zhang, Bin; Shi, Fei; Xiang, Dehui; Yu, Kai; Wang, Ximing; Bagci, Ulas; Chen, Xinjian
Single-channel Sparse Nonnegative Blind Source Separation Method for Automatic 3D Delineation of Lung Tumor in PET Images // IEEE Journal of Biomedical and Health Informatics, 21 (2017), 6; 1656-1666 doi:10.1109/JBHI.2016.2624798 (međunarodna recenzija, članak, znanstveni)
Kopriva, I., Ju, W., Zhang, B., Shi, F., Xiang, D., Yu, K., Wang, X., Bagci, U. & Chen, X. (2017) Single-channel Sparse Nonnegative Blind Source Separation Method for Automatic 3D Delineation of Lung Tumor in PET Images. IEEE Journal of Biomedical and Health Informatics, 21 (6), 1656-1666 doi:10.1109/JBHI.2016.2624798.
@article{article, author = {Kopriva, Ivica and Ju, Wei and Zhang, Bin and Shi, Fei and Xiang, Dehui and Yu, Kai and Wang, Ximing and Bagci, Ulas and Chen, Xinjian}, year = {2017}, pages = {1656-1666}, DOI = {10.1109/JBHI.2016.2624798}, keywords = {Single-channel blind source separation, nonnegative matrix factorization, sparseness, lung tumor delineation, positron emission tomography (PET)}, journal = {IEEE Journal of Biomedical and Health Informatics}, doi = {10.1109/JBHI.2016.2624798}, volume = {21}, number = {6}, issn = {2168-2194}, title = {Single-channel Sparse Nonnegative Blind Source Separation Method for Automatic 3D Delineation of Lung Tumor in PET Images}, keyword = {Single-channel blind source separation, nonnegative matrix factorization, sparseness, lung tumor delineation, positron emission tomography (PET)} }
@article{article, author = {Kopriva, Ivica and Ju, Wei and Zhang, Bin and Shi, Fei and Xiang, Dehui and Yu, Kai and Wang, Ximing and Bagci, Ulas and Chen, Xinjian}, year = {2017}, pages = {1656-1666}, DOI = {10.1109/JBHI.2016.2624798}, keywords = {Single-channel blind source separation, nonnegative matrix factorization, sparseness, lung tumor delineation, positron emission tomography (PET)}, journal = {IEEE Journal of Biomedical and Health Informatics}, doi = {10.1109/JBHI.2016.2624798}, volume = {21}, number = {6}, issn = {2168-2194}, title = {Single-channel Sparse Nonnegative Blind Source Separation Method for Automatic 3D Delineation of Lung Tumor in PET Images}, keyword = {Single-channel blind source separation, nonnegative matrix factorization, sparseness, lung tumor delineation, positron emission tomography (PET)} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Uključenost u ostale bibliografske baze podataka::


  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font