Pregled bibliografske jedinice broj: 904058
Singular BGG complexes for the symplectic case
Singular BGG complexes for the symplectic case, 2017., doktorska disertacija, Prirodoslovno-matematički fakultet - Matematički odsjek, Zagreb
CROSBI ID: 904058 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Singular BGG complexes for the symplectic case
Autori
Mrđen, Rafael
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
Prirodoslovno-matematički fakultet - Matematički odsjek
Mjesto
Zagreb
Datum
23.10
Godina
2017
Stranica
Xv + 107
Mentor
Pandžić, Pavle ; Souček, Vladimír
Ključne riječi
BGG ; Resolution ; Homogeneous bundles ; Invariant differential operators ; Generalized Verma modules ; Symplectic group, Lagrangian Grassmannian ; Penrose transform
Sažetak
Let G be a semisimple Lie group and P its parabolic subgroup. It is well known that any finite-dimensional simple G-module allows a resolution by invariant differential operators acting between direct sums of homogeneous bundles over the generalized flag manifold G/P. Such a resolution is called the Bernstein- Gelfand-Gelfand (BGG for short) resolution. In the dual setting, this corresponds to the resolution of a finite-dimensional simple g- module by direct sums of generalized Verma modules, which is also called the BGG resolution. Modules in the resolution have a regular infinitesimal character. Using the Penrose transform, we construct analogues of such resolutions in certain singular infinitesimal characters, in the holomorphic geometric setting, for type C. We take G to be the symplectic group, P its |1|-graded parabolic subgroup, so that G/P is the Lagrangian Grassmannian. We explicitly describe the operators in the resolution, and determine their order. We prove the exactness of the constructed complex over the big affine cell.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ 4176
ZCI QuantiXLie
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb