Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 903986

A Comparative Study of FFT, DCT and DWT for Efficient Arrhytmia Classification in RP-RF Framework


Marasović, Tea; Papić, Vladan
A Comparative Study of FFT, DCT and DWT for Efficient Arrhytmia Classification in RP-RF Framework // International Journal of E-Health and Medical Communications, 9 (2018), 1; 35-49 doi:10.4018/IJEHMC.2018010103 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 903986 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Comparative Study of FFT, DCT and DWT for Efficient Arrhytmia Classification in RP-RF Framework

Autori
Marasović, Tea ; Papić, Vladan

Izvornik
International Journal of E-Health and Medical Communications (1947-315X) 9 (2018), 1; 35-49

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
compressive sensing ; DCT ; DWT ; ECG classification ; FFT ; MIT-BIH ; random forest ; random projection

Sažetak
Computer-aided ECG classification is an important tool for timely diagnosis of abnormal heart conditions. This paper proposes a novel framework that combines the theory of compressive sensing with random forests to achieve reliable automatic cardiac arrhythmia detection. Furthermore, the paper evaluates the characterization power of FFT, DCT and DWT data transformations in order to extract significant features that will bring the additional boost to the classification performance. The experiments – carried out over MIT-BIH benchmark arrhythmia database, following the standards and recommended practices provided by AAMI – demonstrate that DWT based features exhibit better performances compared to other two feature extraction techniques for a relatively small number of random projected coefficients, i.e. after considerable (approx. 85%) dimensionality reduction of the input signal. The results are very promising, suggesting that the proposed model could be implemented for practical applications of real-time ECG monitoring, due to its low-complexity.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Vladan Papić (autor)

Avatar Url Tea Marasović (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Marasović, Tea; Papić, Vladan
A Comparative Study of FFT, DCT and DWT for Efficient Arrhytmia Classification in RP-RF Framework // International Journal of E-Health and Medical Communications, 9 (2018), 1; 35-49 doi:10.4018/IJEHMC.2018010103 (međunarodna recenzija, članak, znanstveni)
Marasović, T. & Papić, V. (2018) A Comparative Study of FFT, DCT and DWT for Efficient Arrhytmia Classification in RP-RF Framework. International Journal of E-Health and Medical Communications, 9 (1), 35-49 doi:10.4018/IJEHMC.2018010103.
@article{article, author = {Marasovi\'{c}, Tea and Papi\'{c}, Vladan}, year = {2018}, pages = {35-49}, DOI = {10.4018/IJEHMC.2018010103}, keywords = {compressive sensing, DCT, DWT, ECG classification, FFT, MIT-BIH, random forest, random projection}, journal = {International Journal of E-Health and Medical Communications}, doi = {10.4018/IJEHMC.2018010103}, volume = {9}, number = {1}, issn = {1947-315X}, title = {A Comparative Study of FFT, DCT and DWT for Efficient Arrhytmia Classification in RP-RF Framework}, keyword = {compressive sensing, DCT, DWT, ECG classification, FFT, MIT-BIH, random forest, random projection} }
@article{article, author = {Marasovi\'{c}, Tea and Papi\'{c}, Vladan}, year = {2018}, pages = {35-49}, DOI = {10.4018/IJEHMC.2018010103}, keywords = {compressive sensing, DCT, DWT, ECG classification, FFT, MIT-BIH, random forest, random projection}, journal = {International Journal of E-Health and Medical Communications}, doi = {10.4018/IJEHMC.2018010103}, volume = {9}, number = {1}, issn = {1947-315X}, title = {A Comparative Study of FFT, DCT and DWT for Efficient Arrhytmia Classification in RP-RF Framework}, keyword = {compressive sensing, DCT, DWT, ECG classification, FFT, MIT-BIH, random forest, random projection} }

Uključenost u ostale bibliografske baze podataka::


  • INSPEC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font