Pregled bibliografske jedinice broj: 903374
Steiner Degree Distances
Steiner Degree Distances // MATCH : communications in mathematical and in computer chemistry, 78 (2017), 221-230 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 903374 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Steiner Degree Distances
Autori
Mao, Yaping ; Wang, Zhao ; Gutman, Ivan ; Klobučar, Antoaneta
Izvornik
MATCH : communications in mathematical and in computer chemistry (0340-6253) 78
(2017);
221-230
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
distance ; Steiner distance ; degree distance ; Steiner
Sažetak
The concept of degree distance $DD(G)$ of a connected graphs $G$ was introduced by Dobrynin and Kochetova in 1994. Recently, Gutman introduced the concept of $k$-center Steiner degree distance of a graph. The \emph{;$k$-center Steiner degree distance}; $DD_k(G)$ of a connected graph $G$ is defined by $SDD_k(G)=\sum_{;\overset{;S\subseteq V(G)};{;|S|=k};};\left(\sum_{;v\in S};deg_G(v)\right) d_G(S)$, where $d_G(S)$ is the Steiner $k$-distance of $S$ and $deg_G(v)$ is the degree of the vertex $v$ in $G$. Expressions for $SW_k$ for some special graphs are obtained. We also give sharp upper and lower bounds of $SW_k$ of a connected graph, and establish some of its properties in the case of trees.
Izvorni jezik
Engleski
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus