Pregled bibliografske jedinice broj: 903255
Effects of ultrasound and high pressure on physicochemical properties and HMF formation in Turkish honey types
Effects of ultrasound and high pressure on physicochemical properties and HMF formation in Turkish honey types // Journal of food engineering, 219 (2018), 129-136 doi:10.1016/j.jfoodeng.2017.09.019 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 903255 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Effects of ultrasound and high pressure on physicochemical properties and HMF formation in Turkish honey types
Autori
Önür, İpek ; Misra, N.N. ; Barba, Francisco J. ; Putnik, Predrag ; Lorenzo, Jose M. ; Gökmen, Vural ; Alpas, Hami
Izvornik
Journal of food engineering (0260-8774) 219
(2018);
129-136
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Ultrasound ; Thermal-assisted ; high hydrostatic pressure ; Honey ; HMF ; Diastase ; Liquefaction
(Ultrasound Thermal-assisted high hydrostatic pressure Honey HMF Diastase Liquefaction)
Sažetak
In industrial production, thermal processing of honey at 50 °C commonly induces liquefaction, i.e. it reduces the crystal count and viscosity and delays any subsequent crystallization. Unfortunately, thermal treatment can generate toxic 5-hydroxymethylfurfural (HMF), thereby resulting in quality reduction. Considering this, the present work aims at evaluating the influence of (two) processing technologies as alternatives to thermal processing of honey, namely high hydrostatic pressure (HHP ; P = 220–330 MPa, T = 50/60 °C, t = 23/106 min), and ultrasound processing (US ; at 24 kHz). The quality parameters evaluated for honey included liquefaction time, HMF content, diastase number, colour and viscosity. The best process conditions for maximising liquefaction were found to be P = 220 MPa, T = 50 °C, t = 106 min for HHP, and a 7 mm probe with 0.5 cycles (batch) for US treatment. US treatment is recommended over thermal processing owing to the convenience, shorter processing times, and less quality loss. Likewise, HHP treatment was shorter and with lower HMF values than thermal processing. In conclusion, ultrasound and HHP are both potential alternatives to thermal processing for liquefaction of honey crystals.
Izvorni jezik
Engleski
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus