Pregled bibliografske jedinice broj: 902709
On Wiener inverse interval problem of trees
On Wiener inverse interval problem of trees // ARS Mathematica Contemporanea, 15 (2018), 1; 19-37 doi:10.26493/1855-3974.1376.7c2 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 902709 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On Wiener inverse interval problem of trees
Autori
Sedlar, Jelena
Izvornik
ARS Mathematica Contemporanea (1855-3966) 15
(2018), 1;
19-37
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Wiener index ; Wiener inverse interval problem ; tree
Sažetak
The Wiener index W(G) of a simple connected graph G is defined as the sum of distances over all pairs of vertices in a graph. We denote by W[Tn] the set of all values of the Wiener index for a graph from the class Tn of trees on n vertices. The largest interval of consecutive integers (consecutive even integers in case of odd n) contained in W[Tn] is denoted by Wint[Tn]. In this paper we prove that both sets are of cardinality 1⁄6n3 + O(n5/2) in the case of even n, while in the case of odd n we prove that the cardinality of both sets equals 1⁄12n3 + O(n5/2), which essentially solves two conjectures posed in the literature.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split
Profili:
Jelena Sedlar
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus